The search functionality is under construction.

Keyword Search Result

[Keyword] W-band(9hit)

1-9hit
  • A Wideband 16×16-Slot array antenna With Low Side-lobe Design in W-band

    Hao LUO  Wenhao TAN  Luoning GAN  Houjun SUN  

    This paper has been cancelled due to violation of duplicate submission policy on IEICE Transactions on Communications
     
    PAPER-Antennas and Propagation

      Vol:
    E102-B No:8
      Page(s):
    1689-1694

    A W-band corporate-feed 16×16-slot array antenna with low sidelobe level is designed and fabricated. The basic unit of the array is a 2×2-circular-slot subarray with step square cavities and uses an E-plane waveguide as the feeding line. An efficient method to design an unequal power-splitting ratio but equal phase (UPEP) E-plane waveguide T-junction (E-T) is proposed for constructing a 1-to-64 power-tapering feed network, which is the critical part to realize low sidelobe level. The whole array is fabricated with aluminum by milling and bonded by the vacuum brazing process. The measured results demonstrate that the array can achieve a 7.2% bandwidth with VSWR<1.5 and holistic sidelobe levels lower than -23.5dB in E-plane and H-plane from 89GHz ∼ 95.8GHz. The measured gain is higher than 31.7dBi over the working band with the antenna efficiency better than 67.5%.

  • Digital Multiple Notch Filter Design with Nelder-Mead Simplex Method

    Qiusheng WANG  Xiaolan GU  Yingyi LIU  Haiwen YUAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:1
      Page(s):
    259-265

    Multiple notch filters are used to suppress narrow-band or sinusoidal interferences in digital signals. In this paper, we propose a novel optimization design technique of an infinite impulse response (IIR) multiple notch filter. It is based on the Nelder-Mead simplex method. Firstly, the system function of the desired notch filter is constructed to form the objective function of the optimization technique. Secondly, the design parameters of the desired notch filter are optimized by Nelder-Mead simplex method. A weight function is also introduced to improve amplitude response of the notch filter. Thirdly, the convergence and amplitude response of the proposed technique are compared with other Nelder-Mead based design methods and the cascade-based design method. Finally, the practicability of the proposed notch filter design technique is demonstrated by some practical applications.

  • BER Analysis for a QPSK DS-CDMA System over Rayleigh Channel with a NBI Suppression Complex Adaptive IIR Notch Filter

    Aloys MVUMA  Shotaro NISHIMURA  Takao HINAMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:11
      Page(s):
    2369-2375

    In this paper, analysis of average bit error ratio (BER) performance of a quadriphase shift keying (QPSK) direct-sequence code-division multiple-access (DS-CDMA) system with narrow-band interference (NBI) suppression complex adaptive infinite-impulse response (IIR) notch filter is presented. QPSK DS-CDMA signal is transmitted over a Rayleigh frequency-nonselective fading channel and the NBI has a randomly-varying frequency. A closed-form expression that relates BER with complex coefficient IIR notch filter parameters, received signal-to-noise ratio (SNR), number of DS-CDMA active users and processing gain is derived. The derivation is based on the Standard Gaussian Approximation (SGA) method. Accuracy of the BER expression is confirmed by computer simulation results.

  • Frequency Estimator by LS Approximation of Narrow-Band Spectrum

    Cui YANG  Gang WEI  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:8
      Page(s):
    1553-1555

    Based on the least square (LS) approximation of sinusoidal signal in frequency domain by sample data, a frequency estimator is derived. Since sinusoidal signals are narrow-banded whereas white noise spreads equally in the whole spectrum, only narrow-band approximation around the actual tone is needed, and thus the influence of noise can be decreased significantly with high computational efficiency. Experimental results show that, without any iterations, the performance of the proposed estimator is close to the Cramer-Rao Bound (CRB), and has a lower SNR threshold compared with other existing estimators.

  • Speaker Verification in Realistic Noisy Environment in Forensic Science

    Toshiaki KAMADA  Nobuaki MINEMATSU  Takashi OSANAI  Hisanori MAKINAE  Masumi TANIMOTO  

     
    PAPER-Speaker Verification

      Vol:
    E91-D No:3
      Page(s):
    558-566

    In forensic voice telephony speaker verification, we may be requested to identify a speaker in a very noisy environment, unlike the conditions in general research. In a noisy environment, we process speech first by clarifying it. However, the previous study of speaker verification from clarified speech did not yield satisfactory results. In this study, we experimented on speaker verification with clarification of speech in a noisy environment, and we examined the relationship between improving acoustic quality and speaker verification results. Moreover, experiments with realistic noise such as a crime prevention alarm and power supply noise was conducted, and speaker verification accuracy in a realistic environment was examined. We confirmed the validity of speaker verification with clarification of speech in a realistic noisy environment.

  • A Study on Electromagnetic Wave Absorber for W-Band Radars Using Permalloy

    Dong Il KIM  Chang-Mook CHOI  Rui LI  Dae Hee LEE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E90-B No:8
      Page(s):
    2138-2142

    In this paper, we use Permalloy and CPE (Permalloy: CPE=70:30 wt.%) to fabricate the electromagnetic (EM) wave absorber for W-band radars. The EM wave absorption abilities at different thicknesses were simulated using material properties of the EM wave absotber, and an EM wave absorber was manufactured based on the simulated design. The comparisons of simulated and measured results show good agreement. Measurements show that a 1.15 mm thick EM wave absorber has absorption ability higher than 18 dB at 94 GHz for missile guidance radars, and a 1.4 mm EM wave absorber has absorption ability higher than 20 dB at 76 GHz for collision-avoidance radars.

  • A Band Extension Technique for G.711 Speech Using Steganography

    Naofumi AOKI  

     
    LETTER-Network

      Vol:
    E89-B No:6
      Page(s):
    1896-1898

    This study investigates a band extension technique for speech data encoded with G.711, the most common codec for digital speech communications system such as VoIP. The proposed technique employs steganography for the transmission of the side information required for the band extension. Due to the steganography, the proposed technique is able to enhance the speech quality without an increase of the amount of data transmission. From the results of a subjective experiment, it is indicated that the proposed technique may potentially be useful for improving the speech quality, compared with the conventional technique.

  • Adaptive Optimization of Notch Bandwidth of an IIR Filter Used to Suppress Narrow-Band Interference in DSSS System

    Aloys MVUMA  Shotaro NISHIMURA  Takao HINAMOTO  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E85-A No:8
      Page(s):
    1789-1797

    Adaptive optimization of the notch bandwidth of a lattice-based adaptive infinite impulse response (IIR) notch filter is presented in this paper. The filter is used to improve the performance of a direct sequence spread spectrum (DSSS) binary phase shift keying (BPSK) communication system by suppressing a narrow-band interference at the receiver. A least mean square (LMS) algorithm used to adapt the notch bandwidth coefficient to its optimum value which corresponds to the maximum signal to noise ratio (SNR) improvement factor is derived. Bit error rate (BER) improvement gained by the DSSS communication system using the filter with the optimized notch bandwidth is also shown. Computer simulation results are compared with those obtained analytically to demonstrate the validity of theoretical predictions for various received signal parameters.

  • Narrow-Band Interference Suppression in CDMA Spread-Spectrum Communication Systems Based on Sub-Optimum Unitary Transforms

    Paeiz AZMI  Masoumeh NASIRI-KENARI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:1
      Page(s):
    239-246

    In this paper, we present several unitary transform-domain filtering techniques based on Karhaunen-Loeve Transform (KLT) for narrow-band interference rejection in CDMA communication systems. The reason for selecting the KLT is that it is an optimum unitary transform in the sense of packing the energy of the narrow-band interference. As a result after applying this transform, a small portion of the transformed signal would be interfered by the narrow-band interference, and thus must be set to zero. Due to unavailability of the optimum transform (KLT), several sub-optimum transforms are presented and their performances are compared with the well-known conventional transform methods such as Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT) in the presence of both Auto Regressive (AR) and sinusoidal narrow-band interference. Our simulation results show that the proposed transform methods significantly outperform the conventional methods.