The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Web security(3hit)

1-3hit
  • DISOV: Discovering Second-Order Vulnerabilities Based on Web Application Property Graph

    Yu CHEN  Zulie PAN  Yuanchao CHEN  Yuwei LI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    133-145

    Web application second-order vulnerabilities first inject malicious code into the persistent data stores of the web server and then execute it at later sensitive operations, causing severe impact. Nevertheless, the dynamic features, the complex data propagation, and the inter-state dependencies bring many challenges in discovering such vulnerabilities. To address these challenges, we propose DISOV, a web application property graph (WAPG) based method to discover second-order vulnerabilities. Specifically, DISOV first constructs WAPG to represent data propagation and inter-state dependencies of the web application, which can be further leveraged to find the potential second-order vulnerabilities paths. Then, it leverages fuzz testing to verify the potential vulnerabilities paths. To verify the effectiveness of DISOV, we tested it in 13 popular web applications in real-world and compared with Black Widow, the state-of-the-art web vulnerability scanner. DISOV discovered 43 second-order vulnerabilities, including 23 second-order XSS vulnerabilities, 3 second-order SQL injection vulnerabilities, and 17 second-order RCE vulnerabilities. While Black Widow only discovered 18 second-order XSS vulnerabilities, with none second-order SQL injection vulnerability and second-order RCE vulnerability. In addition, DISOV has found 12 0-day second-order vulnerabilities, demonstrating its effectiveness in practice.

  • Follow Your Silhouette: Identifying the Social Account of Website Visitors through User-Blocking Side Channel

    Takuya WATANABE  Eitaro SHIOJI  Mitsuaki AKIYAMA  Keito SASAOKA  Takeshi YAGI  Tatsuya MORI  

     
    PAPER-Network Security

      Pubricized:
    2019/11/11
      Vol:
    E103-D No:2
      Page(s):
    239-255

    This paper presents a practical side-channel attack that identifies the social web service account of a visitor to an attacker's website. Our attack leverages the widely adopted user-blocking mechanism, abusing its inherent property that certain pages return different web content depending on whether a user is blocked from another user. Our key insight is that an account prepared by an attacker can hold an attacker-controllable binary state of blocking/non-blocking with respect to an arbitrary user on the same service; provided that the user is logged in to the service, this state can be retrieved as one-bit data through the conventional cross-site timing attack when a user visits the attacker's website. We generalize and refer to such a property as visibility control, which we consider as the fundamental assumption of our attack. Building on this primitive, we show that an attacker with a set of controlled accounts can gain a complete and flexible control over the data leaked through the side channel. Using this mechanism, we show that it is possible to design and implement a robust, large-scale user identification attack on a wide variety of social web services. To verify the feasibility of our attack, we perform an extensive empirical study using 16 popular social web services and demonstrate that at least 12 of these are vulnerable to our attack. Vulnerable services include not only popular social networking sites such as Twitter and Facebook, but also other types of web services that provide social features, e.g., eBay and Xbox Live. We also demonstrate that the attack can achieve nearly 100% accuracy and can finish within a sufficiently short time in a practical setting. We discuss the fundamental principles, practical aspects, and limitations of the attack as well as possible defenses. We have successfully addressed this attack by collaborative working with service providers and browser vendors.

  • Information-Flow-Based Access Control for Web Browsers

    Sachiko YOSHIHAMA  Takaaki TATEISHI  Naoshi TABUCHI  Tsutomu MATSUMOTO  

     
    PAPER-Authentication and Authorization Techniques

      Vol:
    E92-D No:5
      Page(s):
    836-850

    The emergence of Web 2.0 technologies such as Ajax and Mashup has revealed the weakness of the same-origin policy [1], the current de facto standard for the Web browser security model. We propose a new browser security model to allow fine-grained access control in the client-side Web applications for secure mashup and user-generated contents. We propose a browser security model that is based on information-flow-based access control (IBAC) to overcome the dynamic nature of the client-side Web applications and to accurately determine the privilege of scripts in the event-driven programming model.