The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] affine invariant(3hit)

1-3hit
  • Fingerprint Verification and Identification Based on Local Geometric Invariants Constructed from Minutiae Points and Augmented with Global Directional Filterbank Features

    Chuchart PINTAVIROOJ  Fernand S. COHEN  Woranut IAMPA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:6
      Page(s):
    1599-1613

    This paper addresses the problems of fingerprint identification and verification when a query fingerprint is taken under conditions that differ from those under which the fingerprint of the same person stored in a database was constructed. This occurs when using a different fingerprint scanner with a different pressure, resulting in a fingerprint impression that is smeared and distorted in accordance with a geometric transformation (e.g., affine or even non-linear). Minutiae points on a query fingerprint are matched and aligned to those on one of the fingerprints in the database, using a set of absolute invariants constructed from the shape and/or size of minutiae triangles depending on the assumed map. Once the best candidate match is declared and the corresponding minutiae points are flagged, the query fingerprint image is warped against the candidate fingerprint image in accordance with the estimated warping map. An identification/verification cost function using a combination of distance map and global directional filterbank (DFB) features is then utilized to verify and identify a query fingerprint against candidate fingerprint(s). Performance of the algorithm yields an area of 0.99967 (perfect classification is a value of 1) under the receiver operating characteristic (ROC) curve based on a database consisting of a total of 1680 fingerprint images captured from 240 fingers. The average probability of error was found to be 0.713%. Our algorithm also yields the smallest false non-match rate (FNMR) for a comparable false match rate (FMR) when compared to the well-known technique of DFB features and triangulation-based matching integrated with modeling non-linear deformation. This work represents an advance in resolving the fingerprint identification problem beyond the state-of-the-art approaches in both performance and robustness.

  • A New Framework for Constructing Accurate Affine Invariant Regions

    Li TIAN  Sei-ichiro KAMATA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E90-D No:11
      Page(s):
    1831-1840

    In this study, we propose a simple, yet general and powerful framework for constructing accurate affine invariant regions. In our framework, a method for extracting reliable seed points is first proposed. Then, regions which are invariant to most common affine transformations can be extracted from seed points by two new methods the Path Growing (PG) or the Thresholding Seeded Growing Region (TSGR). After that, an improved ellipse fitting method based on the Direct Least Square Fitting (DLSF) is used to fit the irregularly-shaped contours from the PG or the TSGR to obtain ellipse regions as the final invariant regions. In the experiments, our framework is first evaluated by the criterions of Mikolajczyk's evaluation framework [1], and then by near-duplicate detection problem [2]. Our framework shows its superiorities to the other detectors for different transformed images under Mikolajczyk's evaluation framework and the one with TSGR also gives satisfying results in the application to near-duplicate detection problem.

  • Vision-Based Human Interface System with World-Fixed and Human-Centered Frames Using Multiple View Invariance

    Kang-Hyun JO  Kentaro HAYASHI  Yoshinori KUNO  Yoshiaki SHIRAI  

     
    PAPER

      Vol:
    E79-D No:6
      Page(s):
    799-808

    This paper presents a vision-based human interface system that enables a user to move a target object in a 3D CG world by moving his hand. The system can interpret hand motions both in a frame fixed in the world and a frame attached to the user. If the latter is chosen, the user can move the object forward by moving his hand forward even if he has changed his body position. In addition, the user does not have to keep in mind that his hand is in the camera field of view. The active camera system tracks the user to keep him in its field of view. Moreover, the system does not need any camera calibration. The key for the realization of the system with such features is vision algorithms based on the multiple view affine invariance theory. We demon-strate an experimental system as well as the vision algorithms. Human operation experiments show the usefulness of the system.