The search functionality is under construction.

Keyword Search Result

[Keyword] alamouti code(4hit)

1-4hit
  • Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications

    Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2023/04/17
      Vol:
    E106-B No:10
      Page(s):
    1024-1033

    Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.

  • Maximum Likelihood Demodulators and Their Evaluations on Amplify-and-Forward Cooperative OFDM-Based Wireless LAN Systems

    Hayato FUKUZONO  Yusuke ASAI  Riichi KUDO  Koichi ISHIHARA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2435-2448

    In this paper, we propose demodulators for the Golden and Alamouti codes in amplify-and-forward (AF) cooperative communication with one relay. The proposed demodulators output exact log likelihood ratios (LLRs) with recursion based on the Jacobian logarithm. The cooperative system with the proposed demodulator for the Golden code has the benefit of efficient data transmission, while the system for the Alamouti code has low demodulation complexity. Quantitative analyses of computational complexity of the proposed demodulators are conducted. The transmission performance for various relay location and power settings is evaluated on cooperative orthogonal frequency division multiplexing (OFDM)-based wireless local area network (LAN) systems. In evaluations, the optimal relay location and power settings are found. The cooperative system with the proposed demodulators for the Golden and Alamouti codes offers 1.5 and 1.9 times larger areas where 10.8 and 5.4Mbit/s can be obtained than a non-cooperative (direct) system in a typical office environment, respectively.

  • A Simple Cooperative Relaying with Alamouti Coded Transmission

    Tomoya YAMAOKA  Yoshitaka HARA  Noriyuki FUKUI  Hiroshi KUBO  Takaya YAMAZATO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    643-646

    Cooperative diversity using space-time codes offers effective space diversity with low complexity, but the scheme needs the space-time coding process in the relay nodes. We propose a simple cooperative relay scheme that uses space-time coding. In the scheme, the source node transmits the Alamouti coded signal sequences and the sink node receives the signal sequence via the two coordinated relay nodes. At the relay nodes, the operation procedure is just permutation and forwarding of the signal sequence. In the proposed scheme, none of the relay nodes need quadrature detection and space-time coding and the simple relay process offers effective space diversity. Moreover, simulations show the effectiveness of the proposed relay process by some simulations.

  • A Decision-Directed Receiver for Alamouti Coded OFDM Systems

    Jaekwon KIM  Robert W. HEATH, Jr.  Edward J. POWERS  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:10
      Page(s):
    3141-3143

    When the Alamouti code is applied (as a space-time block code) to an OFDM system with transmit diversity, the simple Alamouti decoding requires that each subchannel is flat-fading and constant over two symbol periods (Alamouti codeword period). The second requirement makes the Alamouti decoding scheme not suitable for time varying channels. In this Letter, we propose a new decision directed receiver to better accommodate time varying channels.