The search functionality is under construction.

Keyword Search Result

[Keyword] analytical solution(4hit)

1-4hit
  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

  • A New Matrix Method for Reconstruction of Band-Limited Periodic Signals from the Sets of Integrated Values

    Predrag PETROVIC  

     
    PAPER-Digital Signal Processing

      Vol:
    E91-A No:6
      Page(s):
    1446-1454

    This paper presents a new method for reconstruction of trigonometric polynomials, a specific class of bandlimited signals, from a number of integrated values of input signals. It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise rms measurements of periodic signal (or power and energy) based on the presented signal reconstruction. Based on the value of the integral of the original input (analogue) signal, with a known frequency spectrum but unknown amplitudes and phases, a reconstruction of its basic parameters is done by the means of derived analytical and summarized expressions. Subsequent calculation of all relevant indicators related to the monitoring and processing of ac voltage and current signals is provided in this manner. Computer simulation demonstrating the precision of these algorithms. We investigate the errors related to the signal reconstruction, and provide an error bound around the reconstructed time domain waveform.

  • RSPICE: A Fast and Robust Timing Simulator for Digital MOS VLSI

    Xia CAI  Huazhong YANG  Yaowei JIA  Hui WANG  

     
    PAPER

      Vol:
    E82-A No:11
      Page(s):
    2492-2498

    RSPICE, a fast timing simulator for large digital MOS circuits, is presented in this paper. A new table-based region-wise linear MOS transistor model and the analytical solution of the generic sub-circuit primitive are applied to calculate the transient response of digital MOS circuits. The body effect of pass transistors is included in the MOS model and the floating capacitor network can be handled by this sub-circuit primitive as well. In RSPICE, MOS transistors with a DC path are grouped into a DC-connected block (DCCB), and DCCBs with a feedback path are combined as a strongly connected component (SCC). RSPICE orders SCCs by Tarjan's algorithm and simulates ordered SCCs one by one. DCCBs are basic cells in RSPICE and any DCCB can be mapped into one or more sub-circuit primitives. In order to calculate the transient response of these primitives analytically, RSPICE approximates the input signals of the primitive by piecewise linear functions. To compromise the simulation accuracy and run time, partial waveform and partial time convergent (PWPTC) combined with dynamic windowing technique is applied to simulate SCCs. Other key issues of RSPICE, such as circuit partition, pass-transistor and floating-capacitor processing, simulation-flow control and waveform modification are also discussed in detail. Compared with HSPICE , the simulation result of RSPICE is very accurate with an error less than 3%, but the speed is 1-2 orders over HSPICE.

  • Exact Analytical Solutions for Stationary Input-Output Characteristics of a Nonlinear Fabry-Perot Resonator with Reflection Coatings

    Kazuhiko OGUSU  

     
    LETTER-Opto-Electronics

      Vol:
    E77-C No:9
      Page(s):
    1522-1525

    Exact analytical solutions for the steady-state transmission and reflection characteristics of a nonlinear Fabry-Perot resonator applicable to bistable optical devices are derived. The resonator consists of a Kerr-like nonlinear film sandwiched by reflection mirrors made of a quarter-wave dielectric stack. An equivalent mirrorless model has been introduced to facilitate the analysis. For both positive and negative nonlinear coefficients, the rigorous solutions have been simply expressed in terms of Jacobian elliptic functions.