Yasufumi SASAKI Masanobu KOMINAMI Shinnosuke SAWA
Numerical solutions for the near-field of microstrip antennas are presented. The field distribution is calculated by taking the inverse Fourier transform involving the current distribution with the help of the spectral-domain moment method. A new technique to save the computation time is devised, and the field pattern of the circularly polarized antenna is illustrated.
Hiroyoshi YAMADA Yasutaka OGAWA Kiyohiko ITOH
A superresolution technique is considered for use in antenna gain measurements. A modification of the MUSIC algorithm is employed to resolve incident signals separately in the time domain. The modification involves preprocessing the received data using a spatial scheme prior to applying the MUSIC algorithm. Interference rejection in the antenna measurements using the fast Fourier transform (FFT) based techniques have been realized by a recently developed vector network analyzer, and its availability has been reported in the literature. However, response resolution in the time domain of these conventional techniques is limited by the antenna bandwidth. The MUSIC algorithm has the advantage of being able to eliminate unwanted responses when performing antenna measurements in situations where the antenna band-width is too narrow to support FFT based techniques. In this paper, experimental results of antenna gain measurements in a multipath environment show the accuracy and resolving power of this technique.
Qiang CHEN Kunio SAWAYA Saburo ADACHI Hisaaki OCHI Etsuji YAMAMOTO
A slotted tube resonator (STR) having a shield of conducting circular cylinder which is used as a probe for the magnetic resonance imaging (MRI) is analyzed by using the variational method and the dyadic Green's function of a circular waveguide. Three surface current modes are employed to expand the currents on the STR. Quadruple integrals appearing in the variational expression are evaluated analytically for saving the CPU time. Resonant frequency, Q value and the magnitude of magnetic field distributions for various radii of the shields are obtained to show the effects of the shield. Some measured date are compared with the theoretical results to confirm the validity of the present analysis.
High Tc superconducting (SC) active antennas made from thin films were produced by the magnetron sputtering method. The SC active antennas are found to be good for detecting 50GHz electromagnetic waves. Furthermore, the improvement of the sensitivity of the SC active antennas is demonstrated with the use of a corner reflector.
Research in optical microwave interaction, at its earlier stages, was spured by the desire to make an optically fed and controlled phased array antenna with monolithic microwave integrated circuit (MMIC) transmit/receive (T/R) modules. In the first part of this paper experimental results are presented demonstrating an optically fed phased array antenna operating at C-band in the 5.5 to 5.8 GHz frequency range. The present system consists of two optically fed 14 subarrays with MMIC based active T/R modules. Custom designed fiber optic links have been employed to provide distribution of data and frequency reference signals to phased array antenna. One of the challenges of the future is the development of better interfaces between electronic (microwave) and optical components, including the chip level merging of photonic and electronic components on III-V compounds. This aspect of the research is covered in the second half of the paper.
Takashi SHINOZUKA Akira SUGIURA Atsuhiro NISHIKATA
Theoretical and actual experimental investigations are made on a Loop Antenna System (LAS) consisting of N-gap loop antennas. A general formula for the LAS response to an external EM field is derived by using both the method of moments and techniques for transmission-line analysis. Numerical evaluation verifies that the LAS has favorable characteristics, such as invariable response within a wide frequency range. In addition, differences between the LAS method and the present open-field method in the results of measurement are evaluated. It should be noted that the LAS gives a much lower output for an electrical source than for a magnetic source, even if both sources produce the same value with the open-field method. It is concluded that conversion factors for the results from the LAS method to the open-field method strongly depend on the orientation of the source as well as its characteristics. Consequently, new conversion factors are proposed to obtain practical EMI measurements.
Keiichi NATSUHARA Tsutomu MURASAKI Makoto ANDO
Recently most of the singularities of the equivalent edge currents for flat plates were eliminated by the authors using the paths of most rapid phase variation. A unique direction on the plate was determined for given incidence and observer. This paper extends this method for arbitrary angle wedges and presents the new expressions of the equivalent edge currents. The resultant expressions are valid for any incidence and observation aspects and have no false singularities. Diffraction patterns and radar cross sections of 3-D objects composed of wedges are calculated by using these currents. They show good agreements with experimental data or the results by the other methods.
Yuliman PURWANTO Yasutaka OGAWA Manabu OHMIYA Kiyohiko ITOH
Weather conditions affect the performance of satellite broadcasting receiving systems. For example, snow accretion on antennas degrades G/T seriously because it reduces received signal power and also can increase antenna noise. We need a continuous measurement of G/T to evaluate the effect of the weather conditions to the satellite broadcasting receiving systems. However, a conventional method cannot perform the continuous measurement because the antenna under test must be oriented in a specific direction (to the zenith) to obtain a noise level in a satellite broadcasting channel. This paper presents the continuous measurement of G/T for the satellite broadcasting receiving systems. We describe details of the measurement method. In our measurement system, a standard antenna is placed at the inside of a room in order to prevent the weather conditions from affecting the gain of the standard antenna. The power flux density at the inside of the room is different from that at the outside where the antennas under test are placed. Employing the effective gain of the standard antenna, we take the difference of the power flux density into account. Moreover, we propose a method to estimate the noise level in the satellite broadcasting channel from the values at the outside of the channel, and clarify the accuracy of the noise estimation. Then, we show measurement results of the G/T values for several receiving systems. From these results, we show that the G/T measurement system has high precision. Also, from the specifications of the antenna gain and typical values of the noise figure, it is expected that the measurement system has a sufficient accuracy.
Takehiko TSUKIJI Yasunori KUMON
In order to provide a low profile wire antenna for mobile communication, we have developed a new type of the transmission line type antenna, which we call a Modified Transmission Line Antenna (MTLA). Analysis of a certain type of the modified transmission line antenna has revealed that the input impedance and the gain can be determined independently by appropriately choosing antenna configuration. In this paper, we first explain the fundamental characteristics of the modified transmission line antenna. We then introduce two types of MTLA, i. e. a zigzag MTLA and a double MTLA, for practical application of the MTLA to mobile communication. Their characteristics are also discussed theoretically and experimentally.
Jiro HIROKAWA Makoto ANDO Naohisa GOTO
The authors design a simple feed system for a planar slotted waveguide array. A waveguide π-junction with negligible reflection is cascaded to compose a multiple-way power divider. The frequency characteristics of the power divided to each port and the reflection at the feed point are discussed and high performances are predicted. The maximum number of cascaded junctions in this system can be determined in terms of a desired frequency bandwidth and allowable deviation in divided power.
Naobumi SUZUKI Yasuhiro NAGAI Keiichiro ITOH Osamu MICHIKAMI
This paper describes the structure and properties of superconductive small antennas with thin-film matching circuits. These circuits make it possible to realize small antennas, 38 mm20 mm16 mm in size. This is one quarter the length of our previously reported ceramic antennas. The actual gain of this antennas was -4.5 dBi at 470 MHz. This value is 5.5 dB higher than that of Cu antennas with exactly the same structure.
Yasutaka OGAWA Yasuyuki NAGASHIMA Kiyohiko ITOH
High-speed digital land mobile communications suffer from frequency-selective fading due to a long delay difference. Several techniques have been proposed to overcome the multipath propagation problem. Among them, an adaptive array antenna is suitable for very high-speed transmission because it can suppress the multipath signal of a long delay difference significantly. This paper describes the LMS adaptive array antenna for frequency-selective fading reduction and a new diversity technique. First, we propose a method to generate a reference signal in the LMS adaptive array. At the beginning of communication, we use training codes for the reference signal, which are known at a receiver. After the training period, we use detected codes for the reference signal. We can generate the reference signal modulating a carrier at the receiver by those codes. The carrier is oscillated independently of the incident signal. Then, the carrier frequency of the reference signal is in general different from that of the incident signal. However, the LMS adaptive array works in such a way that the carrier frequency of the array output coincides with that of the reference signal. Namely, the frequency difference does not affect the performance of the LMS adaptive array. Computer simulations show the proper behavior of the LMS adaptive array with the above reference signal generator. Moreover, we present a new multipath diversity technique using the LMS adaptive array. The LMS adaptive array reduces the frequency-selective fading by suppressing the multipath components. This means that the transmitted power is not used sufficiently. We propose a multiple beam antenna with the LMS adaptive array. Each antenna pattern receives one of the multipath components, and we combine them adjusting the timing. Then, we realize the multipath diversity. In addition to the multipath fading reduction, we can improve a signal-to-noise ratio by the diversity technique.
Masamitsu TOKUDA Nobuo KUWABARA
Recent progress in electromagnetic compatibility (EMC) technology has created a need for small and wideband antennas that can be used to measure the quality of EMC measurement facilities and to measure electric field strength for immunity tests and human hazard studies. Antennas using fiber optics are being developed because this kind of antenna has the wideband property and can eliminate the influence of the coaxial cable. This paper first summarizes the development of fiber optic antennas for EMC measurement and the construction of practical fiber optic antennas. It then describes the recent progress that has been made in Japan. This progress includes the electromagnetic source and the electric field sensor using a spherical dipole antenna with O/E or E/O converters, and it includes a wideband electric field sensor using electro-optical crystals.
Keiichiro ITOH Osamu ISHII Yasuhiro KOSHIMOTO Keizo CHO
To realize a highly efficient small antenna, high-Tc superconductors are adopted to fabricate both a self-resonating helical radiator and a quarter-wave matching circuit. The actual gain and bandwidth measured at 478 MHz using a 1/45-wavelength radiator were respectively 1.5 dBi and 0.35%, indicating that this type of antenna has a high radiation efficiency and a fairly wide bandwidth. It is also confirmed through experiments and theoretical simulations that a decrease in the surface resistance of the radiator more effectively improves the radiation efficiency than a decrease in the surface resistance of the matching circuit.