The search functionality is under construction.

Keyword Search Result

[Keyword] approximation method(8hit)

1-8hit
  • Noise Removal Based on Surface Approximation of Color Line

    Koichiro MANABE  Takuro YAMAGUCHI  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E101-A No:9
      Page(s):
    1567-1574

    In a local region of a color image, the color distribution often takes the form of a linear line in the RGB space. This property is called “Color Line” and we propose a denoising method based on this property. When a noise is added on an image, its color distribution spreads from the Color Line. The denoising is achieved by reducing the spread. In conventional methods, Color Line is assumed to be only a single line, but actual distribution takes various shapes such as a single line, two lines, and a plane and so on. In our method, we estimate the distribution in more detail using plane approximation and denoise each patch by reducing the spread depending on the Color Line types. In this way, we can achieve better denoising results than a conventional method.

  • Availability Analysis of a Multibase System with Lateral Resupply between Bases

    Naoki OKUDA  Nobuyuki TAMURA  Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2084-2090

    In this paper, we study on an availability analysis for a multibase system with lateral resupply of spare items between bases. We construct a basic model that a spare item of a base is transported for operation to another base without spare upon occurrence of failure, and simultaneously, the base that supplies the spare item receives the failed item of the other base for repair. We propose an approximation method to obtain the availability of the system and show the accuracy of the solution through numerical experiments. Also, two modified models are constructed to show the efficiency of the basic model. The two models modify the assumption on the lateral resupply of spare items between bases in the basic model. We numerically illustrate that the basic model can increase the availability of the system compared with the two modified models through Monte Carlo simulation.

  • Approximation Method for Obtaining Availability of a Two-Echelon Repair System with Priority Resupply

    Yosuke AIZU  Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E98-A No:5
      Page(s):
    1077-1084

    We propose a reality-based model of a two-echelon repair system with “priority resupply” and present a method for analyzing the availability of the system operated in each base. The two echelon repair system considered in our model consists of one repair station, called depot, and several bases. In each base, n items which constitute a k-out-of-n: G system, called k/n system, are operated. Each item has two failure modes, failures repaired at a base (level 1) and failures repaired at the depot (level 2). When a level 2 failure occurs in a base, either a normal order or an emergency order of a spare item is issued depending on the number of operating items in the base. The spare item in the depot is sent preferentially to the base where the emergency order is placed. We propose two models, both including priority resupply. Firstly, we propose an approximation method for analyzing the basic model where a k/n system is operated in a base. Using a simulation method, we verify the accuracy of our approximation method. Secondly, we expand the basic model to a dual k/n system where the items of the system are interchangeable between two k/n systems in the case of an emergency, which is called “cannibalization”. Then, we show a numerical example and discuss the optimal timing for placing an emergency order.

  • Availability Analysis of a Two-Echelon Repair Model for Systems Comprising Multiple Items

    Nobuyuki TAMURA  Daiki MURAOKA  Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER

      Vol:
    E92-A No:7
      Page(s):
    1600-1607

    This paper considers a two-echelon repair model where several series systems comprising multiple items are operated in each base. We propose a basic model and two modified models. For two models, approximation methods are developed to derive the system availability. The difference between the basic model and the first modified model is whether the normal items in failed series systems are available as spare or not. The second modified model relaxes the assumptions of the first modified model to reflect more realistic situation. We perform numerical analysis for the models to compare their system availabilities and verify the accuracy of the approximation methods.

  • New Proposal and Accuracy Evaluation of Grey Prediction GM

    Guo-Dong LI  Daisuke YAMAGUCHI  Kozo MIZUTANI  Masatake NAGAI  

     
    PAPER-Information Theory

      Vol:
    E90-A No:6
      Page(s):
    1188-1197

    Grey model (abbreviated as GM), which is based on Deng's grey theory, has been established as a prediction model. At present, it has been widely applied in many research fields to solve efficiently the predicted problems of uncertainty systems. However, this model has irrational problems concerning the calculation of derivative and background value z since the predicted accuracy of GM is unsatisfying when original data shows great randomness. In particular, the predicted accuracy falls in case of higher-order derivative or multivariate greatly. In this paper, the new calculation methods of derivative and background value z are first proposed to enhance the predicted power according to cubic spline function. The newly generated model is defined as 3spGM. To further improve predicted accuracy, Taylor approximation method is then applied to 3spGM model. We call the improved version as T-3spGM. Finally, the effectiveness of the proposed model is validated with three real cases.

  • A Cascade Lattice IIR Adaptive Filter for Total Least Squares Problem

    Jun'ya SHIMIZU  Yoshikazu MIYANAGA  Koji TOCHINAI  

     
    PAPER

      Vol:
    E79-A No:8
      Page(s):
    1151-1156

    In many actual applications of the adaptive filtering, input signals as well as output signals often contain observation noises. Hence, it is necessary to develop an adaptive filtering algorithm to such an errors-in-variables (EIV) model. One solution for identifying the EIV model is a total least squares (TLS) algorithm based on a singular value decomposition of an off-line processing. However, it has not been considered to identify the EIV IIR system using an adaptive TLS algorithm of which stability has been guaranteed during adaptation process. Hence we propose a normalized lattice IIR adaptive filtering algorithm for the TLS parameter estimation. We also show the effectiveness of the proposed algorithm under noisy circumstances through simulations.

  • Analysis of a Cherenkov Laser Loaded with a Kerr-like Medium by Multilayer Approximation Method

    Toshio NISHIMURA  Tetsuya UEDA  Toshiyuki SHIOZAWA  

     
    PAPER

      Vol:
    E78-C No:10
      Page(s):
    1427-1432

    The growth characteristics of a two-dimensional Cherenkov laser composed of a planar relativistic electron beam and a parallel plate waveguide one plate of which is loaded with a nonlinear dielectric sheet are analyzed. The permittivity of the nonlinear dielectric sheet becomes inhomogeneous due to the Kerr effect as the electromagnetic wave grows along the waveguide. For the analysis of the electromagnetic fields in the nonlinear dielectric sheet, it is replaced by a number of thin dielectric layers each of which is assumed to be homogeneous. From numerical analysis, it is found that just a few homogeneous layers for the nonlinear dielectric sheet are enough to get the same results as obtained previously by means of the finite element method. This is because the variation of the permittivity across the nonlinear dielectric sheet is as small as within 10% of the linear permittivity of the nonlinear material. Thus the multilayer approximation method is found to be more simple and more efficient for the analysis of the Cherenkov laser loaded with a Kerr-like medium than the finite element method.

  • A Stochastic Evaluation Theory of Arbitrary Acoustic System Response and Its Application to Various Type Sound Insulation Systems--Equivalence Transformation Toward the Standard Hermite Expansion Type Probability Expression--

    Mitsuo OHTA  Hitoshi OGAWA  

     
    LETTER-Acoustic

      Vol:
    E78-A No:4
      Page(s):
    536-540

    In the actual sound environmental systems, it seems to be essentially difficult to exactly evaluate a whole probability distribution form of its response fluctuation, owing to various types of natural, social and human factors. We have reported a unified probability density expression in the standard expansion form of Hermite type orthonormal series taking a well-known Gaussian probability density function (abbr. p.d.f.) as the basis for generally evaluating non-Gaussian, non-linear correlation and/or non-stationary properties of the fluctuation phenomenon. However, in the real sound environment, there still remain many actual problems on the necessity of improving the above standard type probability expression for practical use. First, a central point in this paper is focused on how to find a new probabilistic theory of practically evaluating the variety and complexity of the actual random fluctuations, especially through newly introducing an equvivalence transformation toward the standard type probability expression mentioned above in the expansion form of Hermite type orthonormal series. Then, the effectiveness of the proposed theory has been confirmed experimentally too by applying it to the actual problems on the response probability evaluation of various sound insulation systems in an acoustic room.