The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] arc discharge suppression(2hit)

1-2hit
  • Equivalent Circuit Analysis for Time-Coordinated Non-arcing Operation of Reed Switches

    Noboru WAKATSUKI  Yu YONEZAWA  Atsushi YAMAMOTO  

     
    PAPER-Relays & Switches

      Vol:
    E89-C No:8
      Page(s):
    1182-1186

    We proposed a method for suppressing arc ignition in mechanical contact devices using a transient current switch and a capacitor. We applied the method to conventional reed switches. For the electric circuit analysis, we clarified the momentary voltage-current characteristics at breaking operation of reed switches by FEM analysis. We could also estimate the capacitance of the contact electrodes at the metal bridge rupture by FEM analysis, and would derive the non-arcing condition using SPICE simulation. The suitable capacitor value in the transient current circuit for arc ignition suppression would be depend on the load impedance, the power supply, the time depending contact resistance R(t)s, the contact capacitance, and the minimum arc voltage and current.

  • Time-Coordinated Switching Relay for Arc Discharge Suppression

    Noboru WAKATSUKI  Yuuich AKIBA  Yu YONEZAWA  

     
    PAPER-Relays and Switches

      Vol:
    E88-C No:8
      Page(s):
    1635-1640

    We propose a new electric contact device for arc discharge suppression. The functions of conventional electric contacts are categorized into energizing switch contacts and transient current switch contacts. A capacitor is connected in series to a transient current switch. Suppression of power consumption and arc discharge at breaking contacts are proposed, experimentally measured, and theoretically analyzed. The transient V-I characteristics at breaking contacts are controlled by the transient current switch and the capacitor. The transient responses at contacts were numerically derived by SPICE, and the energizing switch contacts voltage could be controlled to less than the minimum arc voltage. Using 2 conventional relays, no arc ignition at breaking contacts was confirmed for 50 V/25 A.