The search functionality is under construction.

Keyword Search Result

[Keyword] artificial neural networks(10hit)

1-10hit
  • Using a Single Dendritic Neuron to Forecast Tourist Arrivals to Japan

    Wei CHEN  Jian SUN  Shangce GAO  Jiu-Jun CHENG  Jiahai WANG  Yuki TODO  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2016/10/18
      Vol:
    E100-D No:1
      Page(s):
    190-202

    With the fast growth of the international tourism industry, it has been a challenge to forecast the tourism demand in the international tourism market. Traditional forecasting methods usually suffer from the prediction accuracy problem due to the high volatility, irregular movements and non-stationarity of the tourist time series. In this study, a novel single dendritic neuron model (SDNM) is proposed to perform the tourism demand forecasting. First, we use a phase space reconstruction to analyze the characteristics of the tourism and reconstruct the time series into proper phase space points. Then, the maximum Lyapunov exponent is employed to identify the chaotic properties of time series which is used to determine the limit of prediction. Finally, we use SDNM to make a short-term prediction. Experimental results of the forecasting of the monthly foreign tourist arrivals to Japan indicate that the proposed SDNM is more efficient and accurate than other neural networks including the multi-layered perceptron, the neuro-fuzzy inference system, the Elman network, and the single multiplicative neuron model.

  • Neural Network Training Algorithm with Positive Correlation

    Md. SHAHJAHAN  Kazuyuki MURASE  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E88-D No:10
      Page(s):
    2399-2409

    In this paper, we present a learning approach, positive correlation learning (PCL), that creates a multilayer neural network with good generalization ability. A correlation function is added to the standard error function of back propagation learning, and the error function is minimized by a steepest-descent method. During training, all the unnecessary units in the hidden layer are correlated with necessary ones in a positive sense. PCL can therefore create positively correlated activities of hidden units in response to input patterns. We show that PCL can reduce the information on the input patterns and decay the weights, which lead to improved generalization ability. Here, the information is defined with respect to hidden unit activity since the hidden unit plays a crucial role in storing the information on the input patterns. That is, as previously proposed, the information is defined by the difference between the uncertainty of the hidden unit at the initial stage of learning and the uncertainty of the hidden unit at the final stage of learning. After deriving new weight update rules for the PCL, we applied this method to several standard benchmark classification problems such as breast cancer, diabetes and glass identification problems. Experimental results confirmed that the PCL produces positively correlated hidden units and reduces significantly the amount of information, resulting improved generalization ability.

  • Selection of Step-Size Parameter in Neural Networks for Dual Linear Programming

    Bingnan PEI  Shaojing PEI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E88-A No:2
      Page(s):
    575-581

    The paper first researches the properties of neural networks in the framework of the dual linear programming theory, then discusses the variation range of a Hessian matrix associated to dual linear programming problems. By means of eigenvalues method, a Lipschitz constant based formula for determining the algorithm step-size is presented. Two examples are given to show that the proposed formula is efficacious.

  • An Acceleration Processor for Data Intensive Scientific Computing

    Cheong Ghil KIM  Hong-Sik KIM  Sungho KANG  Shin Dug KIM  Gunhee HAN  

     
    PAPER-Scientific and Engineering Computing with Applications

      Vol:
    E87-D No:7
      Page(s):
    1766-1773

    Scientific computations for diffusion equations and ANNs (Artificial Neural Networks) are data intensive tasks accompanied by heavy memory access; on the other hand, their computational complexities are relatively low. Thus, this type of tasks naturally maps onto SIMD (Single Instruction Multiple Data stream) parallel processing with distributed memory. This paper proposes a high performance acceleration processor of which architecture is optimized for scientific computing using diffusion equations and ANNs. The proposed architecture includes a customized instruction set and specific hardware resources which consist of a control unit (CU), 16 processing units (PUs), and a non-linear function unit (NFU) on chip. They are effectively connected with dedicated ring and global bus structure. Each PU is equipped with an address modifier (AM) and 16-bit 1.5 k-word local memory (LM). The proposed processor can be easily expanded by multi-chip expansion mode to accommodate to a large scale parallel computation. The prototype chip is implemented with FPGA. The total gate count is about 1 million with 530, 432-bit embedded memory cells and it operates at 15 MHz. The functionality and performance of the proposed processor is verified with simulation of oil reservoir problem using diffusion equations and character recognition application using ANNs. The execution times of two applications are compared with software realizations on 1.7 GHz Pentium IV personal computer. Though the proposed processor architecture and the instruction set are optimized for diffusion equations and ANNs, it provides flexibility to program for many other scientific computation algorithms.

  • A Method of Learning for Multi-Layer Networks

    Zheng TANG  Xu Gang WANG  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E85-A No:2
      Page(s):
    522-525

    A method of learning for multi-layer artificial neural networks is proposed. The learning model is designed to provide an effective means of escape from the Backpropagation local minima. The system is shown to escape from the Backpropagation local minima and be of much faster convergence than simulated annealing techniques by simulations on the exclusive-or problem and the Arabic numerals recognition problem.

  • A Neural Network for the DOA of VLF/ELF Radio Waves

    Mehrez HIRARI  Masashi HAYAKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E79-B No:10
      Page(s):
    1598-1605

    In the present communication we propose the application of unsupervised Artificial Neural Networks (ANN) to solve general ill-posed problems and particularly we apply them to the the estimation of the direction of arrival (DOA) of VLF/ELF radio waves. We use the wave distribution method which consists in the reconstruction of the energy distribution of magnetospheric VLF/ELF waves at the ionospheric base from observations of the wave's electromagnetic field on the ground. The present application is similar to a number of computerized tomography and image enhancement problems and the proposed algorithm can be straightforwardly extended to other applications in which observations are linearly related to unknowns. Then, we have proven the applicability and also we indicate the superiority of the ANN to the conventional methods to handle this kind of problems.

  • Segmentation of Brain MR Images Based on Neural Networks

    Rachid SAMMOUDA  Noboru NIKI  Hiromu NISHITANI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:4
      Page(s):
    349-356

    In this paper, we present some contributions to improve a previous work's approach presented for the segmentation of magnetic resonance images of the human brain, based on the unsupervised Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of errors' squares, and the second term is a temporary noise added to the cost-term as an excitation to the network to escape from certain local minimums and be more close to the global minimum. Also, to ensure the convergence of the network and its utility in clinic with useful results, the minimization is achieved with a step function permitting the network to reach its stability corresponding to a local minimum close to the global minimum in a prespecified period of time. We present here our approach segmentations results of a patient data diagnosed with a metastatic tumor in the brain, and we compare them to those obtained based on, previous works using Hopfield neural networks, Boltzmann machine and the conventional ISODATA clustering technique.

  • Recognition of Line Shapes Using Neural Networks

    Masaji KATAGIRI  Masakazu NAGURA  

     
    PAPER

      Vol:
    E77-D No:7
      Page(s):
    754-760

    We apply neural networks to implement a line shape recognition/classification system. The purpose of employing neural networks is to eliminate target-specific algorithms from the system and to simplify the system. The system needs only to be trained by samples. The shapes are captured by the following operations. Lines to be processed are segmented at inflection points. Each segment is extended from both ends of it in a certain percentage. The shape of each extended segment is captured as an approximate curvature. Curvature sequence is normalized by size in order to get a scale-invariant measure. Feeding this normalized curvature date to a neural network leads to position-, rotation-, and scale-invariant line shape recognition. According to our experiments, almost 100% recognition rates are achieved against 5% random modification and 50%-200% scaling. The experimental results show that our method is effective. In addition, since this method captures shape locally, partial lines (caused by overlapping etc.) can also be recognized.

  • Generalization Ability of Extended Cascaded Artificial Neural Network Architecture

    Joarder KAMRUZZAMAN  Yukio KUMAGAI  Hiromitsu HIKITA  

     
    LETTER-Neural Networks

      Vol:
    E76-A No:10
      Page(s):
    1877-1883

    We present an extension of the previously proposed 3-layer feedforward network called a cascaded network. Cascaded networks are trained to realize category classification employing binary input vectors and locally represented binary target output vectors. To realize a nonlinearly separable task the extended cascaded network presented here is consreucted by introducing high order cross producted inputs at the input layer. In the construction of the cascaded network, two 2-layer networks are first trained independently by delta rule and then cascaded. After cascading, the intermediate layer can be understood as a hidden layer which is trained to attain preassigned saturated outputs in response to the training set. In a cascaded network trained to categorize binary image patterns, saturation of hidden outputs reduces the effect of corrupted disturbances presented in the input. We demonstrated that the extended cascaded network was able to realize a nonlinearly separable task and yielded better generalization ability than the Backpropagation network.

  • Robust Performance Using Cascaded Artificial Neural Network Architecture

    Joarder KAMRUZZAMAN  Yukio KUMAGAI  Hiromitsu HIKITA  

     
    LETTER-Digital Signal Processing

      Vol:
    E76-A No:6
      Page(s):
    1023-1030

    It has been reported that generalization performance of multilayer feedformard networks strongly depends on the attainment of saturated hidden outputs in response to the training set. Usually standard Backpropagation (BP) network mostly uses intermediate values of hidden units as the internal representation of the training patterns. In this letter, we propose construction of a 3-layer cascaded network in which two 2-layer networks are first trained independently by delta rule and then cascaded. After cascading, the intermediate layer can be viewed as hidden layer which is trained to attain preassigned saturated outputs in response to the training set. This network is particularly easier to construct for linearly separable training set, and can also be constructed for nonlinearly separable tasks by using higher order inputs at the input layer or by assigning proper codes at the intermediate layer which can be obtained from a trained Fahlman and Lebiere's network. Simulation results show that, at least, when the training set is linearly separable, use of the proposed cascaded network significantly enhances the generalization performance compared to BP network, and also maintains high generalization ability for nonlinearly separable training set. Performance of cascaded network depending on the preassigned codes at the intermediate layer is discussed and a suggestion about the preassigned coding is presented.