The search functionality is under construction.

Keyword Search Result

[Keyword] asynchronous MAC(3hit)

1-3hit
  • Energy-Aware MAC Protocol to Extend Network Lifetime in Asynchronous MAC-Based WSNs

    Min-Gon KIM  Hongkyu JEONG  Hong-Shik PARK  

     
    PAPER-Network

      Vol:
    E96-B No:4
      Page(s):
    967-975

    In Wireless Sensor Networks (WSNs), sensor nodes consume their limited battery energy to send and receive data packets for data transmission. If some sensor nodes transmit data packets more frequently due to imbalance in the network topology or traffic flows, they experience higher energy consumption. And if the sensor nodes are not recharged, they will be turned off from the lack of battery energy which will degrade network sustainability. In order to resolve this problem, this paper proposes an Energy-aware MAC Protocol (EMP), which adaptively decides on the size of the channel polling cycle consisting of the sleep state (not to communicate with its target node) and the listening state (to awaken to receive data packets), according to the network traffic condition. Moreover, in accordance with the remaining energy state of the sensor node, the minimum size of the channel polling cycle is increased for better energy saving. For performance evaluation and comparison, we develop a Markov chain-based analytical model and an event-driven simulator. Simulation results show that a sensor node with EMP effectively reduces its energy consumption in imbalanced network condition and traffic flows, while latency somewhat increases under insufficient remaining energy. As a consequence, a holistic perspective for enhanced network sustainability can be studied in consideration of network traffic condition as well as the remaining energy states of sensor nodes.

  • On Searching Available Channels with Asynchronous MAC-Layer Spectrum Sensing

    Chunxiao JIANG  Xin MA  Canfeng CHEN  Jian MA  Yong REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:8
      Page(s):
    2113-2125

    Dynamic spectrum access has become a focal issue recently, in which identifying the available spectrum plays a rather important role. Lots of work has been done concerning secondary user (SU) synchronously accessing primary user's (PU's) network. However, on one hand, SU may have no idea about PU's communication protocols; on the other, it is possible that communications among PU are not based on synchronous scheme at all. In order to address such problems, this paper advances a strategy for SU to search available spectrums with asynchronous MAC-layer sensing. With this method, SUs need not know the communication mechanisms in PU's network when dynamically accessing. We will focus on four aspects: 1) strategy for searching available channels; 2) vacating strategy when PUs come back; 3) estimation of channel parameters; 4) impact of SUs' interference on PU's data rate. The simulations show that our search strategy not only can achieve nearly 50% less interference probability than equal allocation of total search time, but also well adapts to time-varying channels. Moreover, access by our strategies can attain 150% more access time than random access. The moment matching estimator shows good performance in estimating and tracing time-varying channels.

  • Induction Motor Modelling Using Multi-Layer Perceptrons

    Paolo ARENA  Luigi FORTUNA  Antonio GALLO  Salvatore GRAZIANI  Giovanni MUSCATO  

     
    PAPER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    761-771

    Asynchronous machines are a topic of great interest in the research area of actuators. Due to the complexity of these systems and to the required performance, the modelling and control of asynchronous machines are complex questions. Problems arise when the control goals require accurate descriptions of the electric machine or when we need to identify some electrical parameters; in the models employed it becomes very hard to take into account all the phenomena involved and therefore to make the error amplitude adequately small. Moreover, it is well known that, though an efficient control strategy requires knowledge of the flux vector, direct measurement of this quantity, using ad hoc transducers, does not represent a suitable approach, because it results in expensive machines. It is therefore necessary to perform an estimation of this vector, based on adequate dynamic non-linear models. Several different strategies have been proposed in literature to solve the items in a suitable manner. In this paper the authors propose a neural approach both to derive NARMAX models for asynchronous machines and to design non-linear observers: the need to use complex models that may be inefficient for control aims is therefore avoided. The results obtained with the strategy proposed were compared with simulations obtained by considering a classical fifth-order non-linear model.