The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] band-pass filters(2hit)

1-2hit
  • Analysis of Two- and Three-Dimensional Plasmonic Waveguide Band-Pass Filters Using the TRC-FDTD Method

    Jun SHIBAYAMA  Yusuke WADA  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    817-819

    Two plasmonic band-bass filters are analyzed: one is a grating-type filter and the other is a slit-type filter. The former shows a band-pass characteristic with a high transmission for a two-dimensional structure, while the latter exhibits a high transmission even for a three-dimensional structure with a thin metal layer.

  • Ultra-Wideband, Differential-Mode Bandpass Filters with Four Coupled Lines Embedded in Self-Complementary Antennas

    Akira SAITOU  Kyoung-Pyo AHN  Hajime AOKI  Kazuhiko HONJO  Koichi WATANABE  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:7
      Page(s):
    1524-1532

    A design method for an ultra-wideband bandpass filter (BPF) with four coupled lines has been developed. For demonstration purposes, 50 Ω-matched self-complementary antennas integrated with the ultra-wideband, differential-mode BPF with four coupled lines, a notch filter, and a low-pass filter (LPF) were prepared and tested. An optimized structure for a single-stage, broadside-coupled and edge-coupled four-lines BPF was shown to exhibit up to 170% fractional bandwidth and an impedance transformation ratio of 1.2 with little bandwidth reduction, both analytically and experimentally. Using the optimized structure, 6-stage BPFs were designed to transform the self-complementary antenna's constant input impedance (60πεe- 1/2(Ω)) to 50 Ω without degrading bandwidth. In addition, two types of filter variations--a LPF-embedded BPF and a notch filter-embedded BPF--were designed and fabricated. The measured insertion loss of both filter systems was less than 2.6 dB over the ultra-wideband (UWB) band from 3.1 GHz to 10.6 GHz. The filter systems were embedded in the wideband self-complementary antennas to reject unnecessary radiation over the next pass band and 5-GHz wireless LAN band.