A design method for an ultra-wideband bandpass filter (BPF) with four coupled lines has been developed. For demonstration purposes, 50 Ω-matched self-complementary antennas integrated with the ultra-wideband, differential-mode BPF with four coupled lines, a notch filter, and a low-pass filter (LPF) were prepared and tested. An optimized structure for a single-stage, broadside-coupled and edge-coupled four-lines BPF was shown to exhibit up to 170% fractional bandwidth and an impedance transformation ratio of 1.2 with little bandwidth reduction, both analytically and experimentally. Using the optimized structure, 6-stage BPFs were designed to transform the self-complementary antenna's constant input impedance (60πεe- 1/2(Ω)) to 50 Ω without degrading bandwidth. In addition, two types of filter variations--a LPF-embedded BPF and a notch filter-embedded BPF--were designed and fabricated. The measured insertion loss of both filter systems was less than 2.6 dB over the ultra-wideband (UWB) band from 3.1 GHz to 10.6 GHz. The filter systems were embedded in the wideband self-complementary antennas to reject unnecessary radiation over the next pass band and 5-GHz wireless LAN band.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Akira SAITOU, Kyoung-Pyo AHN, Hajime AOKI, Kazuhiko HONJO, Koichi WATANABE, "Ultra-Wideband, Differential-Mode Bandpass Filters with Four Coupled Lines Embedded in Self-Complementary Antennas" in IEICE TRANSACTIONS on Electronics,
vol. E90-C, no. 7, pp. 1524-1532, July 2007, doi: 10.1093/ietele/e90-c.7.1524.
Abstract: A design method for an ultra-wideband bandpass filter (BPF) with four coupled lines has been developed. For demonstration purposes, 50 Ω-matched self-complementary antennas integrated with the ultra-wideband, differential-mode BPF with four coupled lines, a notch filter, and a low-pass filter (LPF) were prepared and tested. An optimized structure for a single-stage, broadside-coupled and edge-coupled four-lines BPF was shown to exhibit up to 170% fractional bandwidth and an impedance transformation ratio of 1.2 with little bandwidth reduction, both analytically and experimentally. Using the optimized structure, 6-stage BPFs were designed to transform the self-complementary antenna's constant input impedance (60πεe- 1/2(Ω)) to 50 Ω without degrading bandwidth. In addition, two types of filter variations--a LPF-embedded BPF and a notch filter-embedded BPF--were designed and fabricated. The measured insertion loss of both filter systems was less than 2.6 dB over the ultra-wideband (UWB) band from 3.1 GHz to 10.6 GHz. The filter systems were embedded in the wideband self-complementary antennas to reject unnecessary radiation over the next pass band and 5-GHz wireless LAN band.
URL: https://global.ieice.org/en_transactions/electronics/10.1093/ietele/e90-c.7.1524/_p
Copy
@ARTICLE{e90-c_7_1524,
author={Akira SAITOU, Kyoung-Pyo AHN, Hajime AOKI, Kazuhiko HONJO, Koichi WATANABE, },
journal={IEICE TRANSACTIONS on Electronics},
title={Ultra-Wideband, Differential-Mode Bandpass Filters with Four Coupled Lines Embedded in Self-Complementary Antennas},
year={2007},
volume={E90-C},
number={7},
pages={1524-1532},
abstract={A design method for an ultra-wideband bandpass filter (BPF) with four coupled lines has been developed. For demonstration purposes, 50 Ω-matched self-complementary antennas integrated with the ultra-wideband, differential-mode BPF with four coupled lines, a notch filter, and a low-pass filter (LPF) were prepared and tested. An optimized structure for a single-stage, broadside-coupled and edge-coupled four-lines BPF was shown to exhibit up to 170% fractional bandwidth and an impedance transformation ratio of 1.2 with little bandwidth reduction, both analytically and experimentally. Using the optimized structure, 6-stage BPFs were designed to transform the self-complementary antenna's constant input impedance (60πεe- 1/2(Ω)) to 50 Ω without degrading bandwidth. In addition, two types of filter variations--a LPF-embedded BPF and a notch filter-embedded BPF--were designed and fabricated. The measured insertion loss of both filter systems was less than 2.6 dB over the ultra-wideband (UWB) band from 3.1 GHz to 10.6 GHz. The filter systems were embedded in the wideband self-complementary antennas to reject unnecessary radiation over the next pass band and 5-GHz wireless LAN band.},
keywords={},
doi={10.1093/ietele/e90-c.7.1524},
ISSN={1745-1353},
month={July},}
Copy
TY - JOUR
TI - Ultra-Wideband, Differential-Mode Bandpass Filters with Four Coupled Lines Embedded in Self-Complementary Antennas
T2 - IEICE TRANSACTIONS on Electronics
SP - 1524
EP - 1532
AU - Akira SAITOU
AU - Kyoung-Pyo AHN
AU - Hajime AOKI
AU - Kazuhiko HONJO
AU - Koichi WATANABE
PY - 2007
DO - 10.1093/ietele/e90-c.7.1524
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E90-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2007
AB - A design method for an ultra-wideband bandpass filter (BPF) with four coupled lines has been developed. For demonstration purposes, 50 Ω-matched self-complementary antennas integrated with the ultra-wideband, differential-mode BPF with four coupled lines, a notch filter, and a low-pass filter (LPF) were prepared and tested. An optimized structure for a single-stage, broadside-coupled and edge-coupled four-lines BPF was shown to exhibit up to 170% fractional bandwidth and an impedance transformation ratio of 1.2 with little bandwidth reduction, both analytically and experimentally. Using the optimized structure, 6-stage BPFs were designed to transform the self-complementary antenna's constant input impedance (60πεe- 1/2(Ω)) to 50 Ω without degrading bandwidth. In addition, two types of filter variations--a LPF-embedded BPF and a notch filter-embedded BPF--were designed and fabricated. The measured insertion loss of both filter systems was less than 2.6 dB over the ultra-wideband (UWB) band from 3.1 GHz to 10.6 GHz. The filter systems were embedded in the wideband self-complementary antennas to reject unnecessary radiation over the next pass band and 5-GHz wireless LAN band.
ER -