The search functionality is under construction.

Keyword Search Result

[Keyword] binary coding(3hit)

1-3hit
  • Multimodal Learning of Geometry-Preserving Binary Codes for Semantic Image Retrieval Open Access

    Go IRIE  Hiroyuki ARAI  Yukinobu TANIGUCHI  

     
    INVITED PAPER

      Pubricized:
    2017/01/06
      Vol:
    E100-D No:4
      Page(s):
    600-609

    This paper presents an unsupervised approach to feature binary coding for efficient semantic image retrieval. Although the majority of the existing methods aim to preserve neighborhood structures of the feature space, semantically similar images are not always in such neighbors but are rather distributed in non-linear low-dimensional manifolds. Moreover, images are rarely alone on the Internet and are often surrounded by text data such as tags, attributes, and captions, which tend to carry rich semantic information about the images. On the basis of these observations, the approach presented in this paper aims at learning binary codes for semantic image retrieval using multimodal information sources while preserving the essential low-dimensional structures of the data distributions in the Hamming space. Specifically, after finding the low-dimensional structures of the data by using an unsupervised sparse coding technique, our approach learns a set of linear projections for binary coding by solving an optimization problem which is designed to jointly preserve the extracted data structures and multimodal data correlations between images and texts in the Hamming space as much as possible. We show that the joint optimization problem can readily be transformed into a generalized eigenproblem that can be efficiently solved. Extensive experiments demonstrate that our method yields significant performance gains over several existing methods.

  • A Low Power 2×28Gb/s Electroabsorption Modulator Driver Array with On-Chip Duobinary Encoding

    Renato VAERNEWYCK  Xin YIN  Jochen VERBRUGGHE  Guy TORFS  Xing-Zhi QIU  Efstratios KEHAYAS  Johan BAUWELINCK  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1623-1629

    An integrated 2×28Gb/s dual-channel duobinary driver IC is presented. Each channel has integrated coding blocks, transforming a non-return-to-zero input signal into a 3-level electrical duobinary signal to achieve an optical duobinary modulation. To the best of our knowledge this is the fastest modulator driver including on-chip duobinary encoding and precoding. Moreover, it only consumes 652mW per channel at a differential output swing of 6Vpp.

  • A New Design of Polynomial Neural Networks in the Framework of Genetic Algorithms

    Dongwon KIM  Gwi-Tae PARK  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E89-D No:8
      Page(s):
    2429-2438

    We discuss a new design methodology of polynomial neural networks (PNN) in the framework of genetic algorithm (GA). The PNN is based on the ideas of group method of data handling (GMDH). Each node in the network is very flexible and can carry out polynomial type mapping between input and output variables. But the performances of PNN depend strongly on the number of input variables available to the model, the number of input variables, and the type (order) of the polynomials to each node. In this paper, GA is implemented to better use the optimal inputs and the order of polynomial in each node of PNN. The appropriate inputs and order are evolved accordingly and are tuned gradually throughout the GA iterations. We employ a binary coding for encoding key factors of the PNN into the chromosomes. The chromosomes are made of three sub-chromosomes which represent the order, number of inputs, and input candidates for modeling. To construct model by using significant approximation and generalization, we introduce the fitness function with a weighting factor. Comparisons with other modeling methods and conventional PNN show that the proposed design method offers encouraging advantages and better performance.