The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] binaural model(3hit)

1-3hit
  • Azimuthal and Elevation Localization Using Inter-Channel Phase and Level Differences for a Hemispheric Object

    Yoshifumi CHISAKI  Toshimichi TAKADA  Masahiro NAGANISHI  Tsuyoshi USAGAWA  

     
    LETTER-Engineering Acoustics

      Vol:
    E91-A No:10
      Page(s):
    3059-3062

    The frequency domain binaural model (FDBM) has been previously proposed to localize multiple sound sources. Since the method requires only two input signals and uses interaural phase and level differences caused by the diffraction generated by the head, flexibility in application is very high when the head is considered as an object. When an object is symmetric with respect to the two microphones, the performance of sound source localization is degraded, as a human being has front-back confusion due to the symmetry in a median plane. This paper proposes to reduce the degradation of performance on sound source localization by a combination of the microphone pair outputs using the FDBM. The proposed method is evaluated by applying to a security camera system, and the results showed performance improvement in sound source localization because of reducing the number of cones of confusion.

  • On Bit Rate Reduction of Inter-Channel Communication for a Binaural Hearing Assistance System

    Yoshifumi CHISAKI  Ryouji KAWANO  Tsuyoshi USAGAWA  

     
    LETTER

      Vol:
    E91-A No:8
      Page(s):
    2041-2044

    A binaural hearing assistance system based on the frequency domain binaural model has been previously proposed. The system can enhance a signal coming from a specific direction. Since the system utilizes a binaural signal, an inter-channel communication between left and right subsystems is required. The bit rate reduction in inter-channel communication is essential for the detachment of the headset from the processing system. In this paper, the performance of a system which uses a differential pulse code modulation codec is examined and the relationship between the bit rate and sound quality is discussed.

  • Binaural Signal Processing and Room Acoustics Planning

    Jens BLAUERT  Markus BODDEN  Hilmar LEHNERT  

     
    INVITED PAPER

      Vol:
    E75-A No:11
      Page(s):
    1454-1459

    The process of room acoustic planning & design can be aided by Binaural Technology. To this end, a three-stage modelling process is proposed that consists of a "sound"-specification phase, a design phase and a work-plan phase. Binaural recording, reproduction and room simulation techniques are used throughout the three phases allowing for subjective/objective specification and surveillance of the design goals. The binaural room simulation techniques involved include physical scale models and computer models of different complexity. Some basics of binaural computer modelling of room acoustics are described and an implementation example is given. Further the general structure of a software system that tries to model important features of the psychophysics of binaural interaction is reported. The modules of the model are: outer-ear simulation, middle-ear simulation, inner-ear simulation, binaural processors, and the final evaluation stage. Using this model various phenomena of sound localization and spatial hearing, such as lateralization, multiple-image phenomena, summing localization, the precedence effect, and auditory spaciousness, can be simulated. Finally, an interesting application of Binaural Technology is presented, namely, a so called Cocktail-Party-Processor. This processor uses the predescribed binaural model to estimate signal parameters of a desired signal which may be distored by any type of interfering signals. In using this strategy, the system is able to even separate the signals of competitive speakers.