The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] body channel(2hit)

1-2hit
  • Driver Status Monitoring System with Body Channel Communication Technique Using Conductive Thread Electrodes

    Beomjin YUK  Byeongseol KIM  Soohyun YOON  Seungbeom CHOI  Joonsung BAE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    318-325

    This paper presents a driver status monitoring (DSM) system with body channel communication (BCC) technology to acquire the driver's physiological condition. Specifically, a conductive thread, the receiving electrode, is sewn to the surface of the seat so that the acquired signal can be continuously detected. As a signal transmission medium, body channel characteristics using the conductive thread electrode were investigated according to the driver's pose and the material of the driver's pants. Based on this, a BCC transceiver was implemented using an analog frequency modulation (FM) scheme to minimize the additional circuitry and system cost. We analyzed the heart rate variability (HRV) from the driver's electrocardiogram (ECG) and displayed the heart rate and Root Mean Square of Successive Differences (RMSSD) values together with the ECG waveform in real-time. A prototype of the DSM system with commercial-off-the-shelf (COTS) technology was implemented and tested. We verified that the proposed approach was robust to the driver's movements, showing the feasibility and validity of the DSM with BCC technology using a conductive thread electrode.

  • Source/Drain Engineering for High Performance Vertical MOSFET

    Takuya IMAMOTO  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    807-813

    In this paper, Source/Drain (S/D) engineering for high performance (HP) Vertical MOSFET (V-MOSFET) in 3Xnm generation and its beyond is investigated, by using gradual S/D profile while degradation of driving current (ION) due to the parasitic series resistance (Rpara) is minimized through two-dimensional device simulation taking into account for gate-induced-drain-leakage (GIDL). In general, it is significant to reduce spreading resistance in the case of conventional Planar MOSFET. Therefore, in this study, we focused and analyzed the abruptness of diffusion layer that is still importance parameter in V-MOSFET. First, for improving the basic device performance such as subthreshold swing (SS), ION, and Rpara, S/D engineering is investigated. The dependency of device performance on S/D abruptness (σS/D) for various Lightly Doped Drain Extension (LDD) abruptness (σLDD) is analyzed. In this study, Spacer Length (LSP) is defined as a function of σS/D. As σS/D becomes smaller and S/D becomes more abrupt, LSP becomes shorter. SS depends on the σS/D rather than the σLDD. ION has the peak value of 1750 µA/µm at σS/D = 2 nm/dec. and σLDD=3 nm/dec. when the silicon pillar diameter (D) is 30 nm and the gate length (Lg) is 60 nm. As σS/D becomes small, higher ION is obtained due to reduction of Rpara while SS is degraded. However, when σS/D becomes too small in the short channel devices (Lg = 60 nm and Lg = 45 nm), ION is degraded because the leakage current due to GIDL is increased and reaches IOFF limit of 100 nA/µm. In addition, as σLDD becomes larger, larger ION is obtained in the case of Lg = 100 nm and Lg = 60 nm because channel length becomes shorter. On the other hand, in the case of Lg = 45 nm, as σLDD becomes larger, ION is degraded because short channel effect (SCE) becomes significant. Next, the dependency of the basic device performance on D is investigated. By slimming D from 30 nm to 10 nm, while SS is improved and approaches the ideal value of 60 mV/Decade, ION is degraded due to increase of on-resistance (Ron). From these results, it is necessary to reduce Rpara while IOFF meets limit of 100 nA/µm for designing S/D of HP V-MOSFET. Especially for the V-MOSFET in the 1Xnm generation and its beyond, the influence of the Rpara and GIDL on ION becomes more significant, and therefore, the trade-off between σS/D and ION has a much greater impact on S/D engineering of V-MOSFET.