The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] buckling(3hit)

1-3hit
  • Multiport Optical Bare-Fiber Connector for Parallel Optical Interconnect Module

    Yasuhiro ANDO  Mitsuo USUI  Nobuo SATO  Kosuke KATSURA  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    72-80

    A high-density multi-port optical connector that exploits the flexibility of bare optical fibers has been developed for use as an optical interface of a parallel optical interconnection module. In the BF (Bare-Fiber) connector, 24 multimode-fibers are mated by direct physical contact in micro-glass-capillaries with a 250-µm pitch. The buckling forces of the optical fibers themselves secure the physical contact. Optical fiber buckling is investigated theoretically and experimentally. A new design method to optimize the span length l and the longitudinal displacement ΔL for the buckling is also proposed based on the requirements afor optical characteristics, mechanical reliability, and dimensional tolerances, etc. A prototype BF connector with l 10 mm and ΔL of 50 µm was designed and fabricated for multimode fiber connections. This connector provides high optical performance: an average insertion loss of 0.05 dB and a return loss of over 35 dB at 850 nm. The optical performance remained stable after a durability test with ten connection-repetitions.

  • A New Physical Contact Connection Method Using the Buckling Force of Optical Fiber

    Masaru KOBAYASHI  Shin'ichi IWANO  Ryo NAGASE  Seiko MITACHI  

     
    PAPER-Components

      Vol:
    E80-C No:2
      Page(s):
    334-339

    Fiber physical contact (FPC) is proposed and demonstrated as a new method designed to enable fibers to be connected easily with a small structure while maintaining high optical performance. FPC is performed by mating two bare optical fibers in a micro sleeve and fixing them to a holder while they are buckled. Buckling is a phenomenon whereby a long column is bent by compression along its length. PC connection is realized by the buckling force of the fibers themselves and does not require any springs. Optical fiber buckling is studied both theoretically and experimentally. The buckling force, which is determined by an initial span between the optical fiber holding points, remains constant when the span is changed and is useful as the PC force. The buckling amplitude which is determined by the span reduction must be so small that it does not cause excess radiation loss. A suitable span is about 7 mm. This generates a 0.7 N. The allowed span reduction is 0.1 mm. This results in a buckling amplitude of 0.64 mm which prevents radiation losses of above 0.1 dB for 1.31 µm light. Based on a study of fiber buckling, we demonstrate the optical performance for FPC connection with a 0.126 mm diameter micro sleeve in which optical fibers are mated and with polished fiber end faces. The insertion loss is under 0.3 dB and the average return loss is 50 dB for 1.31 µm light. These values are stable in the 20 to 70 temperature range. We confirm that FPC connection realizes high optical performance with a small simple structure.

  • Fabrication and Testing of an Ink-Jet Head Based on Buckling Behavior

    Susumu HIRATA  Shingo ABE  Yorishige ISHII  Hirotsugu MATOBA  Tetsuya INUI  

     
    PAPER-Actuator

      Vol:
    E80-C No:2
      Page(s):
    214-220

    An ink-jet head using a buckling diaphragm microactuator is described. The microactuator is composed of a silicon substrate, silicon dioxide insulator, nickel heater layer and electro-plated nickel diaphragm. All the edges of the diaphragm are fixed on the substrate and a narrow gap is formed between the diaphragm and the substrate. A nozzle plate is connected to the actuator by an adhesive spacer to get the ink-jet head. An ink chamber is formed by the surfaces of the diaphragm, the nozzle plate, and the side wall of the spacer. When the diaphragm is heated, thermally induced compressive stress causes the diaphragm to buckle rapidly and the diaphragm simultaneously deflects toward the nozzle plate. The deflection raises the pressure in the ink chamber and an ink droplet is then ejected through the nozzle. The head design was carried out using mechanical analysis of a buckling model, and heat transfer simulation. The diaphragm made from nickel is 300 µm diameter and 2 µm-thick. The narrow gap is 0.4 µm. The cathode current density in nickel sulphamate solution used for nickel electro-plating of the diaphragm was 20 mA/cm2. An ink droplet has been ejected with a velocity of 8 m/s while the ink-jet head is operated by heating the diaphragm with a current of 510 mA at 16.6 V for 10 µs at 1.8 kHz.