The search functionality is under construction.

Keyword Search Result

[Keyword] capacity enhancement(5hit)

1-5hit
  • A High Throughput Device-to-Device Wireless Communication System

    Amin JAMALI  Seyed Mostafa SAFAVI HEMAMI  Mehdi BERENJKOUB  Hossein SAIDI  Masih ABEDINI  

     
    PAPER-Information Network

      Pubricized:
    2018/10/15
      Vol:
    E102-D No:1
      Page(s):
    124-132

    Device-to-device (D2D) communication in cellular networks is defined as direct communication between two mobile users without traversing the base station (BS) or core network. D2D communication can occur on the cellular frequencies (i.e., inband) or unlicensed spectrum (i.e., outband). A high capacity IEEE 802.11-based outband device-to-device communication system for cellular networks is introduced in this paper. Transmissions in device-to-device connections are managed using our proposed medium access control (MAC) protocol. In the proposed MAC protocol, backoff window size is adjusted dynamically considering the current network status and utilizing an appropriate transmission attempt rate. We have considered both cases that the request to send/clear to send (RTS/CTS) mechanism is and is not used in our protocol design. Describing mechanisms for guaranteeing quality of service (QoS) and enhancing reliability of the system is another part of our work. Moreover, performance of the system in the presence of channel impairments is investigated analytically and through simulations. Analytical and simulation results demonstrate that our proposed system has high throughput, and it can provide different levels of QoS for its users.

  • Survey of Network Coding and Its Applications Open Access

    Takahiro MATSUDA  Taku NOGUCHI  Tetsuya TAKINE  

     
    INVITED SURVEY PAPER

      Vol:
    E94-B No:3
      Page(s):
    698-717

    This survey summarizes the state-of-the-art research on network coding, mainly focusing on its applications to computer networking. Network coding generalizes traditional store-and-forward routing techniques by allowing intermediate nodes in networks to encode several received packets into a single coded packet before forwarding. Network coding was proposed in 2000, and since then, it has been studied extensively in the field of computer networking. In this survey, we first summarize linear network coding and provide a taxonomy of network coding research, i.e., the network coding design problem and network coding applications. Moreover, the latter is subdivided into throughput/capacity enhancement, robustness enhancement, network tomography, and security. We then discuss the fundamental characteristics of network coding and diverse applications of network coding in details, following the above taxonomy.

  • Communication Capacity and Quality Enhancement Using a Two-Layered Adaptive Resource Allocation Scheme for Multi-Beam Mobile Satellite Communication Systems

    Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  Masazumi UEBA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1930-1939

    To obtain large capacity, high quality mobile satellite communication systems in the future, we must use a multi-beam that can cope with extremely high levels of frequency reuse. This paper describes a novel resource allocation algorithm for multi-beam satellite communication systems that can dynamically adapt to maximum communication capacity without compromising quality. The algorithm combines two resource allocation schemes that enable it to contend with the ever-changing user distribution and inter-beam interference conditions. The first scheme optimizes the resources amongst beams. To minimize interference, the optimal constraint conditions are clarified when all clusters share and occupy the same bandwidth completely. These constraints are used in the optimization algorithm. The second scheme manages the various required resources and adapts them to the beam gain and interference levels at various user locations within a single beam. We propose a fixed power adaptive modulation scheme to obtain stable communications. This two-layered scheme can satisfactorily allocate multi-beam satellite resources to contend with the increasing communication capacity and still improve the quality.

  • Analysis of Reverse Link Capacity Enhancement for CDMA Cellular Systems Using Two-Hop Relaying

    Koji YAMAMOTO  Susumu YOSHIDA  

     
    PAPER-Reverse Link Capacity for CDMA Cellular

      Vol:
    E87-A No:7
      Page(s):
    1712-1719

    A routing algorithm, utilizing two-hop relaying when necessary, is proposed to enhance the system capacity of code division multiple access (CDMA) cellular systems. Up to now, multihop relaying is applied to cellular systems mainly with the aim of decreasing the transmit power of each mobile station or extending the cell coverage area. Here, in this paper, potential benefit of multihop relaying is studied so as to increase the system capacity. A condition for the interference to be reduced by changing single-hop connections to two-hop connections is analyzed. In addition, a new route selection criterion maximizing the amount of interference reduction is proposed. Simulation results reveal that the proposed criterion is superior to the conventional criterion minimizing the total transmit power in respect of the amount of interference reduction. By using this criterion, an efficient routing algorithm for two-hop CDMA cellular systems is proposed to enhance the system capacity. Simulation results also indicate that by using the proposed routing algorithm in combination with a call admission control, the system capacity is increased even under heavy traffic conditions.

  • European Smart Antenna Test-Bed--Field Trial Results--

    Mark BEACH  Chris SIMMONDS  Paul HOWARD  Peter DARWOOD  

     
    INVITED PAPER

      Vol:
    E84-B No:9
      Page(s):
    2348-2356

    The European Commission, through RACE, ACTS and now the IST programmes, has funded numerous consortium based research projects addressing capacity enhancement by means of Smart or Adaptive Antenna Technology. In addition to capacity enhancement, these projects have also considered the additional operational benefits, such as multipath mitigation and range extension, that this technology can offer to wireless network deployments. This paper provides an overview of the results obtained from the test-bed and field trial evaluations conducted under the ACTS TSUNAMI project. Here, a test-bed facility was developed by the project partners in order to appraise the potential merits of a Smart antenna facet deployment at the base-station cell site of a DCS1800 network. Details of the test-bed hardware and adaptive control algorithms are given, as well as results from the user tracking, traffic bearer quality assessments and range extension experiments. These results help substantiate many of the claims put forward by the proponents of Smart antenna technology, as well as ranking the relative performance of the family of adaptive control algorithms evaluated here. Further, new research activities, which embody Smart Antenna Technology, now supported under IST funding are also introduced.