Kiyoshi KOBAYASHI Shuji KUBOTA
This paper proposes a bit-stream-arranged weighted modulation scheme to improve voice quality in low delay spread frequency selective fading channels. The proposed modulation scheme employs an input bit stream arrangement method that changes the bit stream order for significant bits so that they are not adjacent to each other over time; a mapping method that controls the amplitude of the modulation signals according to the importance of the bits; and modified differential encoding to prevent the error propagation from insignificant to significant bits. Computer simulations clarify that the proposed bit-stream-arranged weighted modulation scheme shows a S/N improvement of 8 dB in an 8-bit linear pulse code modulation (PCM) voice signal compared with the conventional non-weighted π/4-shift quadrature phase shift keying (QPSK) modulation scheme. The proposed scheme also shows 3. 5 dB improvement in a 4-bit adaptive differential pulse code modulation (ADPCM) voice signal. In this case, occurence of 'click noise' in recovered voice signal is halved. Although the proposed scheme increases the peak power of the modulated signals, the non-linearity of the power amplifier is not fatal.
Suguru SANGU Kiyoshi KOBAYASHI Motoichi OHTSU
In nanophotonic device operations, characteristic features on a nanometer scale, such as locally excited states, dependence on the excitation number, and spatial symmetry of a system, play an important role. Using these features, selective excitation energy transfer via an optical near field is shown for a quantum-dot system with discrete energy levels. This selectivity strongly depends on a dipole-inactive state of an exciton, which cannot be excited by the far-field light. Operation principles of logic gates, photon storage, and quantum information processing device, which are based on the selectivity, are proposed, and the temporal dynamics are investigated analytically and numerically by using quantum theory. Nanophotonic devices, which are constructed from quantum mechanical and classical dissipative systems, are expected to become one of a key technologies in future device architecture.
Makoto NARUSE Tetsuya MIYAZAKI Tadashi KAWAZOE Suguru SANGU Kiyoshi KOBAYASHI Fumito KUBOTA Motoichi OHTSU
We approach nanophotonic computing on the basis of optical near-field interactions between quantum dots. A table lookup, or matrix-vector multiplication, architecture is proposed. As fundamental functionality, a data summation mechanism and digital-to-analog conversion are experimentally demonstrated using CuCl quantum dots. Owing to the diffraction-limit-free nature of nanophotonics, these architectures can achieve ultrahigh density integration compared to conventional bulky optical systems, as well as low power dissipation.
Kiyoshi KOBAYASHI Hiroshi KAZAMA
This paper proposes a novel spread spectrum (SS) modem for random access satellite communication systems that employs digital matched filters. The proposed modem employs a parallel structure to ensure detection of packet arrival. Code timing detection with a combination of a coarse detector and a fractional error detector reduces the sampling rate while maintaining the BER performance. An in-symbol pilot multiplexing scheme is also proposed for fast and stable carrier synchronization with a simple hardware. A performance evaluation shows that the proposed modem achieves the UW miss-detection probability of 10-4 at the Eb/No of 0 dB. The overall BER performance achieved in experiments well agrees simulation.
Kiyoshi KOBAYASHI Tetsu SAKATA Yoichi MATSUMOTO Shuji KUBOTA
This paper presents fully digital high speed (17.6Mb/s) burst modem for Offset Quadrature Phase Shift Keying (OQPSK), which employs novel digital modem VLSICs. The modulator VLSIC directly generates modulated intermediate frequency (IF) signals in a fully digitalized manner. A newly proposed digital reverse-modulation and pre-filtered carrier filter-limiter scheme realizes low power consumption and stable operation in a low Eb/No condition. The demodulator VLSIC also achieves fast bit-timing acquisition in burst mode. Moreover, it supports stable initial burst acquisition by a novel automatic frequency control (AFC) acquisition detector and a digital burst detector. A digital burst automatic gain control (AGC) compensates burst-to-burst level differences without analog circutits. Performance evaluation results show that the new modem achieves satisfactory bit-error-rate performance in severe environments. The developed modem has been employed in a commercial portable earth station for ISDN services and reduces the hardware size to one third that of the conventional one.
Narihiro NAKAMOTO Tomohiro OKA Shoichi KITAZAWA Hiroshi BAN Kiyoshi KOBAYASHI
To better understand antenna properties in a narrow space such as in a densely-packed device, a circular microstrip antenna in a narrow parallel-plate waveguide is theoretically studied. An analytical expression is derived for the input impedance in a parallel-plate waveguide by using the cavity model with surface admittance on the side wall. The surface admittance is defined by the external magnetic field due to the equivalent magnetic current at the aperture and takes into account the contribution of the parallel plates to the antenna. The magnetic field external to the antenna, that is in the parallel-plate region, is determined by using a dyadic Green's function. The input impedance is then calculated by a basic definition based on the conservation of the complex power. An analytical expression which couples the resonant frequency and the surface susceptance is also formulated. Presented expressions are validated by comparison with experimental results.
Kiyoshi KOBAYASHI Tomoaki KUMAGAI Shuzo KATO
This paper proposes a group demodulator that employs multi-symbol chirp Fourier transform to demodulate pulse shaped and time asynchronous signals without degradation; this is not possible with conventional group demodulators based on chirp Fourier transform. Computer simulation results show that the bit error rate degradation of the proposed group demodulator at BER=10-3 is less than 0.3dB even when a root Nyquist (α=0.5) filter is used as the transmission pulse shaping filter and the symbol timing offset between the desired channel and the chirp sweep is half the symbol period.
Mitiko MIURA-MATTAUSCH Hiroaki UENO Hans Juergen MATTAUSCH Keiichi MORIKAWA Satoshi ITOH Akiyoshi KOBAYASHI Hiroo MASUDA
The key elements of sub-100 nm MOSFET modeling for circuit simulation are accurate representation of new physical phenomena arising from advancing technologies and numerical efficacy. We summarize the history of MOSFET modeling, and address difficulties faced by conventional methods. The advantage of the surface-potential-based approach will be emphasized. Perspectives for next generations will be also discussed.
Takeshi ONIZAWA Kiyoshi KOBAYASHI Masahiro MORIKURA Toshiaki TANAKA
This paper proposes a novel sequential coherent preambleless demodulator that uses phase signals instead of complex signals in the automatic frequency control (AFC) and carrier recovery circuits. The proposed demodulator employs a phase-combined frequency error detection circuit and dual loop AFC circuit to achieve fast frequency acquisition and low frequency jitter. It also adopts an open loop carrier recovery scheme with a sample hold circuit after the carrier filter to ensure carrier signal stability within a packet. It is shown that the frame error rate performance of the proposed demodulator is superior, by 30%, to that offered by differential detection in a frequency selective Rayleigh fading channel. The hardware size of the proposed demodulator is about only 1/10 that of a conventional coherent demodulator employing complex signals.
Jun-ichi ABE Fumihiro YAMASHITA Katsuya NAKAHIRA Kiyoshi KOBAYASHI
This paper proposes Direct Spectrum Division Transmission with spectrum editing technique. The transmitter divides the single carrier modulated signal into multiple “sub-spectra” in the frequency domain and arranges each sub-spectrum so as to more fully utilize the unused frequency resources. In the receiver, the divided sub-spectra are combined in the frequency domain and demodulated. By editing the divided spectrum in the frequency domain, the total bandwidth occupied by the multiple “sub-spectra” is less than that of the modulated signal. The proposed technique allows the unused frequency resources scattered across the bands to be better utilized. Simulations show that the proposed technique makes the bit error rate negligible.
Fumihiro YAMASHITA Kiyoshi KOBAYASHI Yoshinori NAKASUGA Jin MITSUGI Masazumi UEBA
This paper presents a new automatic-frequency control (AFC) configuration capable of removing wide range frequency offsets (up to about 0.625 fs, where fs is signal symbol rate). The new configuration consists of an AFC that removes frequency offsets between 0.125 fs and another AFC that detects the frequency offset range coarsely between 0.625 fs. This paper describes the principle of the new AFC configuration. The proposed AFC configuration employs four correlators to enhance the acquisition range. It also adopts the reverse modulation scheme to decrease the acquisition time. The performance of the new AFC configuration is confirmed via computer simulations. It is shown that the proposed configuration can accommodate wide range frequency offsets as well as reduce the acquisition time.
Kouhei SUZUKI Hideya SO Daisuke GOTO Yoshinori SUZUKI Fumihiro YAMASHITA Katsuya NAKAHIRA Kiyoshi KOBAYASHI Takatoshi SUGIYAMA
This paper introduces distributed array antenna (DAA) systems that offer high antenna gain. A DAA consists of several small antennas with improved antenna gain. This paper proposes a technique that suppresses the off-axis undesired radiation and compensates the time delay by combining signal processing with optimization of array element positioning. It suppresses the undesired radiation by compensating the delay timing with high accuracy and deliberately generating the inter-symbol interference (ISI) in side-lobe directions. Computer simulations show its effective suppression of the equivalent isotropic radiated power (EIRP) pattern and its excellent BER performance.
Yoshinori SUZUKI Takatoshi SUGIYAMA Kiyoshi KOBAYASHI
This paper proposes an On-Ground Polarization-Forming (GPF) technique to realize a novel polarization-tracking-free satellite communication system whose communication satellite uses linear polarizations. In this system, mobile terminals use circular polarization to realize polarization-tracking-free and simplified terminal configuration. To output circular polarization from the satellite's horizontal and vertical polarization antennas, those output signals transmitted from the satellite are controlled by the base station using the GPF technique. We fabricate a GPF transmitter to evaluate its polarization forming performance. Measured results show that the proposed technique achieves very high cross-polarization discrimination, more than 27 dB.
Daisuke GOTO Fumihiro YAMASHITA Kouhei SUZAKI Hideya SO Yoshinori SUZUKI Kiyoshi KOBAYASHI Naoki KITA
We target the estimation of antenna patterns of distributed array antenna (DAA) systems for satellite communications. Measuring DAA patterns is very difficult because of the large antenna separations involved, more than several tens of wavelengths. Our goal is to elucidate the accuracy of the DAA pattern estimation method whose inputs are actual antenna pattern data and array factors by evaluating their similarity to actually measured DAA radiation patterns. Experiments on two Ku band parabolic antennas show that their patterns can be accurately estimated even if we change the conditions such as frequency, antenna arrangement and polarization. Evaluations reveal that the method has high estimation accuracy since its errors are better than 1dB. We conclude the method is useful for the accurate estimation of DAA patterns.
Takashi SHONO Tomoyuki YAMADA Kiyoshi KOBAYASHI Katsuhiko ARAKI Iwao SASASE
In multicarrier code division multiple access (MC-CDMA) systems, the orthogonality among the spreading codes is destroyed because the channels exhibit frequency-selective fading and the despreading stage performs gain control; that is, inter-code interference (ICI) can significantly degrade system performance. This paper proposes an optimum spreading code assignment method that reflects our analysis of ICI for up and downlink MC-CDMA cellular systems over correlated frequency-selective Rayleigh fading channels. At first, we derive theoretical expressions for the desired-to-undesired signal power ratio (DUR) as a quantitative representation of ICI; computer simulation results demonstrate the validity of the analytical results. Next, based on the ICI imbalance among code pairs, we assign specific spreading codes to users to minimize ICI (in short, to maximize the multiplexing performance); our proposed method considers the quality of service (QoS) policy of users or operators. We show that the proposed method yields better performance, in terms of DUR, than the conventional methods. The proposed method can maximize the multiplexing performance of a MC-CDMA cellular system once the channel model, spreading sequence, and combining strategy have been set. Three combining strategies are examined at the despreading stage for the uplink, equal gain combining (EGC), orthogonality restoring combining (ORC), and maximum ratio combining (MRC), while two are considered for the downlink, EGC and MRC.
Fumihiro YAMASHITA Kiyoshi KOBAYASHI Kohei OHATA Masazumi UEBA
A new seamless symbol rate switchable modem for multi-rate FDMA systems is proposed in this paper. In the new modem, a novel clock phase compensation algorithm makes it possible to switch the symbol rate synchronously between the transmitter and the receiver, with no degradation in BER when the symbol rate is changed. In addition, by matching the interpolation filter to the symbol rate, this modem is capable of operating at lower clock speeds, which greatly reduces the consumption power. Computer simulations confirm its fundamental performance. Simulation results show that the proposed power-efficient symbol rate switchable modem can change the symbol rate without degrading BER performance.
Tomoaki KUMAGAI Kiyoshi KOBAYASHI Katsuhiko KAWAZOE Shuji KUBOTA
This paper proposes a frequency diversity transmission scheme that obtains a frequency diversity gain and does not degrade spectrum efficiency; it utilizes multiple carrier frequencies alternately, not simultaneously. This scheme improves the bit error rate (BER) of significant information bits by sacrificing that of insignificant bits in fading channels. Simulation results show that the error floor of significant information bits is reduced to less than 1/5 while that of insignificant bits is doubled. They also show that the proposed scheme improves the received 4-bit ADPCM voice signal-to-noise ratio (SNR) by approximately 4 dB even when the frequency correlation is 0. 5.
Yoichi MATSUMOTO Kiyoshi KOBAYASHI Tetsu SAKATA Kazuhiko SEKI Shuji KUBOTA Shuzo KATO
This paper presents a fully digital high speed (60 Mb/s) Quadrature Phase Shift Keying (QPSK)/Offset QPSK (OQPSK) burst demodulator for radio applications, which has been implemented on a 0.5 µm Complementary Metal Oxide Semiconductor (CMOS) master slice Very Large Scale Integrated circuit (VLSI). The developed demodulator VLSI eliminates analog devices such as mixers, phase-shifters and Voltage Controlled Oscillator (VCO) for bit-timing recovery, which are used by conventional high-speed burst demodulators. In addition to the fully digital implementation, the VLSI achieves fast carrier and bit-timing acquisition in burst modes by employing a reverse-modulation carrier recovery scheme with a wave-forming filter for OQPSK operation, and a bit-timing recovery scheme with bit-timing estimation and interpolation using a pulse-shaping filter. Results of performance evaluation assuming application in Time Division Multiple Access (TDMA) systems show that the developed VLSI achieves excellent bit-error-rate and carrier-slipping-rate performance at high speed (60 Mb/s) with short preamble words (less than 100 symbols) in low Eb/No environments.
Kiyoshi KOBAYASHI Tomoaki KUMAGAI Shuji KUBOTA Shigeaki OGOSE Takeshi HATTORI
This paper proposes a new cell station (CS) configuration for personal communication systems. The proposed CS employs a modified coherent demodulator with 4-branch maximal ratio combining diversity and a burst-by-burst automatic frequency control (AFC) to enhance the coverage. The proposed CS also employs an antenna-sharing diversity transmission to incorporate more than one transceiver block into a small unit with high power efficiency. With these techniques, the BER performance of the uplink control channel (CCH) is flattened regardless of carrier frequency errors within 12 kHz; the diversity gain of uplink traffic channel (TCH) is improved by 2 dB; the downlink transmission power is reduced by 1.9 dB.
Takashi SHONO Tomoyuki YAMADA Kiyoshi KOBAYASHI Katsuhiko ARAKI Iwao SASASE
In uplink multicarrier code division multiple access (MC-CDMA), the inter-code interference (ICI) caused by the independent and frequency-selective fading channel of each user and the inter-carrier interference caused by the asynchronous reception of each user's OFDM symbols result in multiple access interference (MAI). This paper evaluates the ICI in frequency-selective Rayleigh fading channels for uplink MC-CDMA. We derive theoretical expressions for the desired-to-undesired signal power ratio (DUR) as a quantitative representation of ICI, and validate them by comparison with computer simulations using a Walsh-Hadamard (WH) code. Based on the analytical results, we obtain the optimum spreading sequence that minimizes the ICI (in short, maximizes the multiplexing performance); this sequence appears to be orthogonal. Three equalization combining methods are examined; equal gain combining (EGC), orthogonality restoring combining (ORC), and maximum ratio combining (MRC).