1-8hit |
Shohei SAKURAI Mayu IIDA Kosei OKUNUKI Masahito KUSHIDA
In this study, vertically aligned carbon nanotubes (VA-CNTs) were grown from filler-added LB films with accumulated AlFe2O4 nanoparticles and palmitic acid (C16) as the filler molecule after different hydrogen reduction temperatures of 500°C and 750°C, and the grown VA-CNTs were compared and evaluated. As a result, VA-CNTs were approximately doubled in length after 500°C hydrogen reduction compared to 750°C hydrogen reduction when AlFe2O4 NPs were used. On the other hand, when the catalyst area ratio was decreased by using palmitic acid, i.e., the distance between CNTs was increased, VA-CNTs rapidly shortened after 500°C hydrogen reduction, and VA-CNTs were no longer obtained even in the range where VA-CNTs were obtained in 750°C hydrogen reduction. The inner and outer diameters of VA-CNTs decreased with decreasing catalyst area ratio at 750°C hydrogen reduction and tended to increase at 500°C hydrogen reduction. The morphology of the catalyst nanoparticles after CVD was observed to change significantly depending on the hydrogen reduction temperature and catalyst area ratio. These observations indicate that the state of the catalyst nanoparticles immediately before the CNT growth process greatly affects the physical properties of the CNTs.
John W. McBRIDE Hong LIU Chamaporn CHIANRABUTRA Adam P. LEWIS
A gold coated carbon nanotubes composite was used as a contact material in Micro-Electrical-Mechanical-System (MEMS) switches. The switching contact was tested under typical conditions of MEMS relay applications: load voltage of 4 V, contact force of 1 mN, and load current varied between 20-200 mA. This paper focuses on the wear process over switching lifetime, and the dependence of the wear area on the current is discussed. It was shown that the contact was going to fail when the wear area approached the whole contact area, at which point the contact resistance increased sharply to three times the nominal resistance.
John W. McBRIDE Chamaporn CHIANRABUTRA Liudi JIANG Suan Hui PU
Multi-Walled CNT (MWCNT) are synthesized on a silicon wafer and sputter coated with a gold film. The planar surfaces are mounted on the tip of a piezo-electric actuator and mated with a gold coated hemispherical surface to form an electrical contact. These switching contacts are tested under conditions typical of MEMS relay applications; 4V, with a static contact force of 1mN, at a low current between 20-50mA. The failure of the switch is identified by the evolution of contact resistance which is monitored throughout the switching cycles. The results show that the contact resistance can be stable for up to 120 million switching cycles, which are 106 orders of higher than state-of-the-art pure gold contact. Bouncing behavior was also observed in each switching cycle. The failing mechanism was also studied in relation to the contact surface changes. It was observed that the contact surfaces undergo a transfer process over the switching life time, ultimately leading to switching failure the number of bounces is also related to the fine transfer failure mechanism.
Suhaila MOHD. SANIP Ahmad Fauzi ISMAIL Madzlan AZIZ Tetsuo SOGA
Carbon nanotubes (CNTs) have generated great interest within the many areas of nanotechnology due to their superior and outstanding physical properties. However effective dispersion in many solvents has imposed limitations upon the use of CNTs in a number of novel applications. Functionalization presents a solution for CNTs to be more soluble which make them integrate well into any organic, inorganic or biological systems. CNTs can be easily functionalized using cyclodextrin (CD) treatment. The CD modification of carbon nanotubes is both simple and effective. It requires no prolonged heating, filtration and washing which can severely damage the small diameter nanotubes. The formation of surface functional groups and changes of nanotubes structures of functionalized carbon nanotubes (f-CNTs) were monitored by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM), respectively. From the TGA results, the amount of weight loss of the f-CNTs in varying ratios indicated the amount of CD that was functionalized. It was also noted that the FTIR spectra showed the presence of functional groups associated with CD in the f-CNTs. As a result, the cyclodextrin groups were found to be possibly adsorbed at the surface of the nanotubes walls. The f-CNTs showed substantial solubility in N-methyl-2-pyrrolidone (NMP) which helps in a better distribution of the CNTs in the mixed matrix membrane (MMM) prepared. Hence, the influence of the f-CNTs in the polymer matrix will give rise to enhanced physical properties of the MMM suitable for applications in gas separations.
Naoki KISHI Toshiki SUGAI Hisanori SHINOHARA
The synthesis of single- and double-wall carbon nanotubes by gas flow-modified, catalyst-supported chemical vapor deposition (CCVD) is reported. We have investigated the gas flow condition dependence on the synthesis of carbon nanotubes (CNTs) by placing blocks in the CCVD reactor. Carbon nanotubes having large diameters are preferentially grown under turbulent flow conditions. This indicates that the diameter distribution of CNTs can be controlled by modification of the gas flow condition in the CCVD.
Khalil EL-HAMI Kazumi MATSUSHIGE
This paper focuses on the processing of carbon nanotubes (CNTs) alignment as molecular bridge. A magnitude of an alternative voltage of about 1 V with 1 MHz was applied between two electrodes containing CNTs in suspension. The CNT bundles were well stretched along the field line distribution. Two kinds of directions could be distinguished around the electrode: the parallel and the Gaussian. On the other hand, different lengths of CNT bundles were aligned from one electrode side to the other. Those which were more than 1 µm reached both sides of electrodes while the short one did not but followed the Gaussian distribution of electric field. The short CNTs represent an increasing interest of study as far as their flexibility, mechanical and electrical properties are concerned. That's basically because one of their sides ended on the substrate. Among the advantages of the alignment of the CNT is to control the current flux and the thermal conductivity in composite resins or as new materials for the development of novel single-molecular transistors.
Field emission display (FED) is evolving as a promising technique of flat panel displays in the future. In this paper, various carbon based nanostructures are acted as cathode materials for field emission devices. Dendrite-like diamond-like carbon emitters, carbon nanotubes, carbon nanotips are synthesized by microwave plasma chemical vapor deposition. Many factors affect the performance of field emitters, such as the shape, work function and aspect ratio of emission materials. Modified process of carbon based nano-materials for enhancing field emission efficiency are included intrinsic and extrinsic process. These reformations contain the p-type and n-type doping, carburization and new ultra well-aligned carbon nano-materials. It is found that carbon nano-materials grown on micropatterned diode show higher efficiency of FED. In addition, to achieve a low- turn-on field, the novel scheme involving a new fabrication process of gated structure metal-insulator-semiconductor (MIS) diode by IC technology is also presented.
Electron field emission from diamond, diamond-like carbon, carbon nanotubes and nano-structured carbon is compared. It is found that in all practical cases, emission occurs from regions of positive electron affinity with an emission barrier of 5eV, the work function, and with a large field enhancement. The field enhancement in nanotubes arises from their geometry. In diamond, the field enhancement occurs by depletion of grain boundary states. In diamond-like carbon we propose that it occurs by the presence of sp2-rich channels formed by the soft conditioning process.