The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel characteristic(2hit)

1-2hit
  • Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems Open Access

    Yuling LI  Aihuang GUO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:8
      Page(s):
    1413-1416

    Terahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) is envisioned as a key enabling technology of 6G wireless communication. In UM-MIMO systems, downlink channel state information (CSI) has to be fed to the base station for beamforming. However, the feedback overhead becomes unacceptable because of the large antenna array. In this letter, the characteristic of CSI is explored from the perspective of data distribution. Based on this characteristic, a novel network named Attention-GRU Net (AGNet) is proposed for CSI feedback. Simulation results show that the proposed AGNet outperforms other advanced methods in the quality of CSI feedback in UM-MIMO systems.

  • Monte Carlo Based Channel Characteristics for Underwater Optical Wireless Communications

    Ai-ping HUANG  Lin-wei TAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/17
      Vol:
    E100-B No:4
      Page(s):
    612-618

    In this paper, we investigate the channel characteristics of underwater optical wireless communications (UOWC) based on Monte Carlo simulation method. The impulse response and channel time dispersion of the link are discussed. Also we consider the channel parameters comprehensively like the water type, attenuation length, divergence angle, beam width, field-of-view (FOV), receiver aperture and position. Simulation results suggest that in clear water, the channel can effectively be considered as non inter-symbol interference (ISI) when working over distance of up to 40m. Therefore, in practice the receiver does not need to perform computationally complex signal processing operations. However, in harbor water, the channel time dispersion will enlarge with larger FOV or divergence angle, and reduce the data transmission efficiency. When the attenuation length is smaller than diffused length, larger receivers offer lower intensity than smaller ones. In contrast, the intensity enhances with larger receiver at the small FOV, however, they trend to similar regardless of the apertures at large FOV. Furthermore, we study the effect of misalignment of the transmitter and receiver on the received intensity. The results give us some insight in terms of what constitutes an accurate UOWC channel.