The search functionality is under construction.

Keyword Search Result

[Keyword] channel matrix(2hit)

1-2hit
  • Intruder Detection Performance of SIMO and MIMO Sensors with Same Number of Channel Responses

    Keita USHIKI  Kentaro NISHIMORI  Naoki HONMA  Hideo MAKINO  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2499-2505

    Intruder detection method by utilizing a time variation of Multiple Input Multiple Output (MIMO) channel (MIMO Sensor) has been proposed. Although the channel capacity on the MIMO transmission is severely degraded in time variant channels, we can take advantage of this feature in MIMO Sensor applications. We have already demonstrated the effectiveness of 2×2 MIMO sensor using 2.4GHz band at a small room (Size is 50m2). In this paper, we compare the detection probability of SIMO/MIMO sensors when the number of channel responses are same between SIMO/MIMO sensors: The numbers of transmit and receive antennas are 1 and 4 (SIMO), it is clarified that 2 and 2 (MIMO). The measurement was carried out at the room with the size of 140m2. From the measured results, 2×2 MIMO sensor obtains the same or higher detection probability compared to 4×1 SIMO sensor regardless of the measured location.

  • Performance Analysis Based on Channel Matrix Eigenvalue for MIMO Systems in LOS Environments

    Yutaka MURAKAMI  Kiyotaka KOBAYASHI  Masayuki ORIHASHI  Takashi MATSUOKA  

     
    PAPER-MIMO System

      Vol:
    E88-A No:10
      Page(s):
    2926-2936

    This paper makes an examination of BER (bit error rate) performance in 22 MIMO (Multi-Input Multi-Output) systems using spatial multiplexing in a LOS (line-of-sight) environment by analysis using the eigenvalue and eigenvector of the channel matrix and simulation. It is shown that BER performance in a LOS environment is dependent on the phase relation of direct paths and the minimum squared absolute value of the eigenvalue, which are determined by the propagated distance. A technique for improving BER performance in a LOS environment is then considered based on these findings. A receive antenna selection (RAS) technique is presented which uses the minimum squared absolute value of the channel matrix eigenvalue. Proof is then given that BER performance is improved using this RAS technique, thus making clear the validity of this approach for obtaining optimum BER performance in a LOS environment.