The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] chirp signal(6hit)

1-6hit
  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • A Super-Resolution Channel Estimation Algorithm Using Convex Programming

    Huan HAO  Huali WANG  Wanghan LV  Liang CHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1236-1239

    This paper proposes an effective continuous super-resolution (CSR) algorithm for the multipath channel estimation. By designing a preamble including up-chirp and down-chirp symbols, the Doppler shift and multipath delay are estimated jointly by using convex programming. Simulation results show that the proposed CSR can achieve better detection probability of the number of multipaths than the eigenvalue based methods. Moreover, compared with conventional super-resolution techniques, such as MUSIC and ESPRIT methods, the proposed CSR algorithm demonstrates its advantage in root mean square error of the Doppler shift and multipath delay, especially for the closely located paths within low SNR.

  • Tracking Analysis of Complex Adaptive IIR Notch Filter for a Linear Chirp Signal

    Aloys MVUMA  Shotaro NISHIMURA  Takao HINAMOTO  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:6
      Page(s):
    1526-1529

    This paper analyzes frequency tracking characteristics of a complex-coefficient adaptive infinite impulse response (IIR) notch filter with a simplified gradient-based algorithm. The input signal to the complex notch filter is a complex linear chirp embedded in a complex zero-mean white Gaussian noise. The analysis starts with derivation of a first-order real-coefficient difference equation with respect to steady-state instantaneous frequency tracking error. Closed-form expression for frequency tracking mean square error (MSE) is then derived from the difference equation. Lastly, closed-form expressions for optimum notch bandwidth coefficient and step size constant that minimize the frequency tracking MSE are derived. Computer simulations are presented to validate the analysis.

  • Detection of Leak Location in a Pipeline by Acoustic Signal

    Umut YUNUS  Masaru TSUNASAKI  Yiwei HE  Masanobu Kominami   Katsumi YAMASHITA  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:8
      Page(s):
    2053-2061

    Gas or water leaks in pipes that are buried under ground or that are situated in the walls of buildings may occur due to aging or unpredictable accidents, such as earthquakes. Therefore, the detection of leaks in pipes is an important task and has been investigated extensively. In the present paper, we propose a novel leak detection method by means of acoustic wave. We inject an acoustic chirp signal into a target pipeline and then estimate the leak location from the delay time of the compressed pulse by passing the reflected signal through a correlator. In order to distinguish a leak reflection in a complicated pipeline arrangement, the reflection characteristics of leaks are carefully discussed by numerical simulations and experiments. There is a remarkable difference in the reflection characteristics between the leak and other types of discontinuity, and the property can be utilized to distinguish the leak reflection. The experimental results show that, even in a complicated pipe arrangement including bends and branches, the proposed approach can successfully implement the leak detection. Furthermore, the proposed approach has low cost and is easy to implement because only a personal computer and some commonly equipment are required.

  • Adaptive Chirp Beamforming for Direction-of-Arrival Estimation of Wideband Chirp Signals in Sensor Arrays

    Jeong-Soo KIM  Byung-Woong CHOI  Eun-Hyon BAE  Kyun-Kyung LEE  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:8
      Page(s):
    2757-2760

    An adaptive chirp beamforming method is proposed to solve the bias problem in the direction-of-arrival (DOA) estimation of wideband chirp signals that have identical time-frequency parameters yet emanate from different directions. The proposed method, based on the steered minimum variance (STMV) method, exploits the time-frequency structure of a chirp signal to improve the DOA estimation performance by effectively suppressing the wideband chirp interferences causing the bias. Simulations are performed to demonstrate the effectiveness of the proposed method.

  • Pulse Compression Subsurface Radar

    Ikuo ARAI  Yoshiyuki TOMIZAWA  Masanobu HIROSE  

     
    INVITED PAPER

      Vol:
    E83-B No:9
      Page(s):
    1930-1937

    The application of subsurface radar using electromagnetic waves in the VHF band is wide and includes surveying voids under the ground and archaeological prospecting. To achieve a wider application range, the survey depth must be deeper. In this paper, a method of pulse compression using a chirp signal as one of the methods to fulfill this requirement is described, and its advantages and problems are discussed. First, a delay correlation method is proposed as a processing method of pulse compression. It converts RF band chirp signal directly into a pulse. Moreover, the method improves the S/N ratio by over 40 dB compared with conventional pulse radar. Therefore, it has the same detection ability as conventional pulse radar even though it uses less transmitting power. Next, the influences of RF amplifier saturation and underground propagation characteristics on the chirp signal are discussed; both are shown to have little influence on the detection ability of the method.