The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] class-E inverter(2hit)

1-2hit
  • Load-Independent Class-E Design with Load Adjustment Circuit Inverter Considering External Quality Factor Open Access

    Akihiko ISHIWATA  Yasumasa NAKA  Masaya TAMURA  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    315-322

    The load-independent zero-voltage switching class-E inverter has garnered considerable interest as an essential component in wireless power transfer systems. This inverter achieves high efficiency across a broad spectrum of load conditions by incorporating a load adjustment circuit (LAC) subsequent to the resonant filter. Nevertheless, the presence of the LAC influences the output impedance of the inverter, thereby inducing a divergence between the targeted and observed output power, even in ideal lossless simulations. Consequently, iterative adjustments to component values are required via an LC element implementation. We introduce a novel design methodology that incorporates an external quality factor on the side of the resonant filter, inclusive of the LAC. Thus, the optimized circuit achieves the intended output power without necessitating alterations in component values.

  • Analysis and Design of 6.78MHz Wireless Power Transfer System for Robot Arm Open Access

    Katsuki TOKANO  Wenqi ZHU  Tatsuki OSATO  Kien NGUYEN  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    494-503

    This paper presents a design method of a two-hop wireless power transfer (WPT) system for installing on a robot arm. The class-E inverter and the class-D rectifier are used on the transmission and receiving sides, respectively, in the proposed WPT system. Analytical equations for the proposed WPT system are derived as functions of the geometrical and physical parameters of the coils, such as the outer diameter and height of the coils, winding-wire diameter, and number of turns. Using the analytical equations, we can optimize the WPT system to obtain the design values with the theoretically highest power-delivery efficiency under the size limitation of the robot arm. The circuit experiments are in quantitative agreement with the theoretical predictions obtained from the analysis, indicating the validity of the analysis and design method. The experimental prototype achieved 83.6% power-delivery efficiency at 6.78MHz operating frequency and 39.3W output power.