The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] compact size(2hit)

1-2hit
  • Highly Integrated DBC-Based IPM with Ultra-Compact Size for Low Power Motor Drive Applications

    Huanyu WANG  Lina HUANG  Yutong LIU  Zhenyuan XU  Lu ZHANG  Tuming ZHANG  Yuxiang FENG  Qing HUA  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/02/20
      Vol:
    E106-C No:8
      Page(s):
    442-445

    This paper proposes the new series highly integrated intelligent power module (IPM), which is developed to provide a ultra-compact, high performance and reliable motor drive system. Details of the key design technologies of the IPM is given and practical application issues such as electrical characteristics, system operation performance and power dissipation are discussed. Layout placement and routing have been optimized in order to reduce and balance the parasitic impedances. By implementing an innovative direct bonding copper (DBC) ceramic substrate, which can effectively dissipate heat, the IPM delivers a fully integrated power stages including two three-phase inverters, power factor correction (PFC) and rectifier in an ultra-compact 75.5mm × 30mm package, offering up to a 17.3 percent smaller space than traditional motor drive scheme.

  • A New Miniaturization and the nth Harmonic Suppression of Wilkinson Power

    Ali Reza HAZERI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:2
      Page(s):
    215-219

    In this article, a simple structure of the Wilkinson power divider which can suppress the nth harmonics of the Wilkinson power divider is proposed. By replacing the quarter wavelength transmission lines of the conventional Wilkinson power divider with the equivalent P-type transmission lines, a compact power divider which can suppress the nth harmonic is achieved. Design equations of proposed P-type line are achieved by ABCD matrices. To verify the design approach, the proposed power divider is designed, simulated (by ADS, CST Studio, and Sonnet simulators), and fabricated at 1 GHz to suppress the fifth harmonic. The proposed structure is 46% of the conventional Wilkinson power divider, while maintaining the characteristics of the conventional Wilkinson power divider at the fundamental frequency. The insertion losses at the fifth harmonic are larger than 35 dB. Furthermore, the second to seventh harmonic are suppressed by least 10 dB. Here is an excellent agreement between simulated results and measured results.