1-8hit |
Xiubin ZHANG Yun HU Yinglu ZHANG
A method for expanding the channels of data acquisition unit used in distributed microcomputer data measure & control systems and a technique to call assembly routines by C Language are introduced in the paper. The method may increase the number of data acquisition points ten to hundreds times. So it may raise the price performance ratio of all distributed data measure & control system greatly. And the programming method may optimize program performance.
Wentao LYU Di ZHOU Chengqun WANG Lu ZHANG
In this paper, we present a novel discriminative dictionary learning (DDL) method for image classification. The local structural relationship between samples is first built by the Laplacian eigenmaps (LE), and then integrated into the basic DDL frame to suppress inter-class ambiguity in the feature space. Moreover, in order to improve the discriminative ability of the dictionary, the category label information of training samples is formulated into the objective function of dictionary learning by considering the discriminative promotion term. Thus, the data points of original samples are transformed into a new feature space, in which the points from different categories are expected to be far apart. The test results based on the real dataset indicate the effectiveness of this method.
Huanyu WANG Lina HUANG Yutong LIU Zhenyuan XU Lu ZHANG Tuming ZHANG Yuxiang FENG Qing HUA
This paper proposes the new series highly integrated intelligent power module (IPM), which is developed to provide a ultra-compact, high performance and reliable motor drive system. Details of the key design technologies of the IPM is given and practical application issues such as electrical characteristics, system operation performance and power dissipation are discussed. Layout placement and routing have been optimized in order to reduce and balance the parasitic impedances. By implementing an innovative direct bonding copper (DBC) ceramic substrate, which can effectively dissipate heat, the IPM delivers a fully integrated power stages including two three-phase inverters, power factor correction (PFC) and rectifier in an ultra-compact 75.5mm × 30mm package, offering up to a 17.3 percent smaller space than traditional motor drive scheme.
Fengchuan XU Qiaoyue LI Guilu ZHANG Yasheng CHANG Zixuan ZHENG
This letter presents a global feature-based method for evaluating the no reference quality of scanning electron microscopy (SEM) contrast-distorted images. Based on the characteristics of SEM images and the human visual system, the global features of SEM images are extracted as the score for evaluating image quality. In this letter, the texture information of SEM images is first extracted using a low-pass filter with orientation, and the amount of information in the texture part is calculated based on the entropy reflecting the complexity of the texture. The singular values with four scales of the original image are then calculated, and the amount of structural change between different scales is calculated and averaged. Finally, the amounts of texture information and structural change are pooled to generate the final quality score of the SEM image. Experimental results show that the method can effectively evaluate the quality of SEM contrast-distorted images.
Shuyun LUO Wushuang WANG Yifei LI Jian HOU Lu ZHANG
Crowdsourcing becomes a popular data-collection method to relieve the burden of high cost and latency for data-gathering. Since the involved users in crowdsourcing are volunteers, need incentives to encourage them to provide data. However, the current incentive mechanisms mostly pay attention to the data quantity, while ignoring the data quality. In this paper, we design a Data-quality awaRe IncentiVe mEchanism (DRIVE) for collaborative tasks based on the Stackelberg game to motivate users with high quality, the highlight of which is the dynamic reward allocation scheme based on the proposed data quality evaluation method. In order to guarantee the data quality evaluation response in real-time, we introduce the mobile edge computing framework. Finally, one case study is given and its real-data experiments demonstrate the superior performance of DRIVE.
Kai YU Wentao LYU Xuyi YU Qing GUO Weiqiang XU Lu ZHANG
The automatic defect detection for fabric images is an essential mission in textile industry. However, there are some inherent difficulties in the detection of fabric images, such as complexity of the background and the highly uneven scales of defects. Moreover, the trade-off between accuracy and speed should be considered in real applications. To address these problems, we propose a novel model based on YOLOv4 to detect defects in fabric images, called Feature Augmentation YOLO (FA-YOLO). In terms of network structure, FA-YOLO adds an additional detection head to improve the detection ability of small defects and builds a powerful Neck structure to enhance feature fusion. First, to reduce information loss during feature fusion, we perform the residual feature augmentation (RFA) on the features after dimensionality reduction by using 1×1 convolution. Afterward, the attention module (SimAM) is embedded into the locations with rich features to improve the adaptation ability to complex backgrounds. Adaptive spatial feature fusion (ASFF) is also applied to output of the Neck to filter inconsistencies across layers. Finally, the cross-stage partial (CSP) structure is introduced for optimization. Experimental results based on three real industrial datasets, including Tianchi fabric dataset (72.5% mAP), ZJU-Leaper fabric dataset (0.714 of average F1-score) and NEU-DET steel dataset (77.2% mAP), demonstrate the proposed FA-YOLO achieves competitive results compared to other state-of-the-art (SoTA) methods.
Lu ZHANG Chengqun WANG Mengyuan FANG Weiqiang XU
To solve the problem of metamerism in the color reproduction process, various spectral reflectance reconstruction methods combined with neural network have been proposed in recent years. However, these methods are generally sensitive to initial values and can easily converge to local optimal solutions, especially on small data sets. In this paper, we propose a spectral reflectance reconstruction algorithm based on the Back Propagation Neural Network (BPNN) and an improved Sparrow Search Algorithm (SSA). In this algorithm, to solve the problem that BPNN is sensitive to initial values, we propose to use SSA to initialize BPNN, and we use the sine chaotic mapping to further improve the stability of the algorithm. In the experiment, we tested the proposed algorithm on the X-Rite ColorChecker Classic Mini Chart which contains 24 colors, the results show that the proposed algorithm has significantly better performance compared to other algorithms and moreover it can meet the needs of spectral reflectance reconstruction on small data sets. Code is avaible at https://github.com/LuraZhang/spectral-reflectance-reconsctuction.
Han MA Qiaoling ZHANG Roubing TANG Lu ZHANG Yubo JIA
Recently, robust speech recognition for real-world applications has attracted much attention. This paper proposes a robust speech recognition method based on the teacher-student learning framework for domain adaptation. In particular, the student network will be trained based on a novel optimization criterion defined by the encoder outputs of both teacher and student networks rather than the final output posterior probabilities, which aims to make the noisy audio map to the same embedding space as clean audio, so that the student network is adaptive in the noise domain. Comparative experiments demonstrate that the proposed method obtained good robustness against noise.