The search functionality is under construction.

Author Search Result

[Author] Qing GUO(4hit)

1-4hit
  • FA-YOLO: A High-Precision and Efficient Method for Fabric Defect Detection in Textile Industry Open Access

    Kai YU  Wentao LYU  Xuyi YU  Qing GUO  Weiqiang XU  Lu ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2023/09/04
      Vol:
    E107-A No:6
      Page(s):
    890-898

    The automatic defect detection for fabric images is an essential mission in textile industry. However, there are some inherent difficulties in the detection of fabric images, such as complexity of the background and the highly uneven scales of defects. Moreover, the trade-off between accuracy and speed should be considered in real applications. To address these problems, we propose a novel model based on YOLOv4 to detect defects in fabric images, called Feature Augmentation YOLO (FA-YOLO). In terms of network structure, FA-YOLO adds an additional detection head to improve the detection ability of small defects and builds a powerful Neck structure to enhance feature fusion. First, to reduce information loss during feature fusion, we perform the residual feature augmentation (RFA) on the features after dimensionality reduction by using 1×1 convolution. Afterward, the attention module (SimAM) is embedded into the locations with rich features to improve the adaptation ability to complex backgrounds. Adaptive spatial feature fusion (ASFF) is also applied to output of the Neck to filter inconsistencies across layers. Finally, the cross-stage partial (CSP) structure is introduced for optimization. Experimental results based on three real industrial datasets, including Tianchi fabric dataset (72.5% mAP), ZJU-Leaper fabric dataset (0.714 of average F1-score) and NEU-DET steel dataset (77.2% mAP), demonstrate the proposed FA-YOLO achieves competitive results compared to other state-of-the-art (SoTA) methods.

  • An Accurate Packer Identification Method Using Support Vector Machine

    Ryoichi ISAWA  Tao BAN  Shanqing GUO  Daisuke INOUE  Koji NAKAO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    253-263

    PEiD is a packer identification tool widely used for malware analysis but its accuracy is becoming lower and lower recently. There exist two major reasons for that. The first is that PEiD does not provide a way to create signatures, though it adopts a signature-based approach. We need to create signatures manually, and it is difficult to catch up with packers created or upgraded rapidly. The second is that PEiD utilizes exact matching. If a signature contains any error, PEiD cannot identify the packer that corresponds to the signature. In this paper, we propose a new automated packer identification method to overcome the limitations of PEiD and report the results of our numerical study. Our method applies string-kernel-based support vector machine (SVM): it can measure the similarity between packed programs without our operations such as manually creating signature and it provides some error tolerant mechanism that can significantly reduce detection failure caused by minor signature violations. In addition, we use the byte sequence starting from the entry point of a packed program as a packer's feature given to SVM. That is, our method combines the advantages from signature-based approach and machine learning (ML) based approach. The numerical results on 3902 samples with 26 packer classes and 3 unpacked (not-packed) classes shows that our method achieves a high accuracy of 99.46% outperforming PEiD and an existing ML-based method that Sun et al. have proposed.

  • Towards Cost-Effective P2P Traffic Classification in Cloud Environment

    Tao BAN  Shanqing GUO  Masashi ETO  Daisuke INOUE  Koji NAKAO  

     
    PAPER-Network and Communication

      Vol:
    E95-D No:12
      Page(s):
    2888-2897

    Characterization of peer-to-peer (P2P) traffic is an essential step to develop workload models towards capacity planning and cyber-threat countermeasure over P2P networks. In this paper, we present a classification scheme for characterizing P2P file-sharing hosts based on transport layer statistical features. The proposed scheme is accessed on a virtualized environment that simulates a P2P-friendly cloud system. The system shows high accuracy in differentiating P2P file-sharing hosts from ordinary hosts. Its tunability regarding monitoring cost, system response time, and prediction accuracy is demonstrated by a series of experiments. Further study on feature selection is pursued to identify the most essential discriminators that contribute most to the classification. Experimental results show that an equally accurate system could be obtained using only 3 out of the 18 defined discriminators, which further reduces the monitoring cost and enhances the adaptability of the system.

  • Multiuser Detection Based on Particle Swarm Optimization Algorithm over Multipath Fading Channels

    Zhen-qing GUO  Yang XIAO  Moon Ho LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    421-424

    The Multiple Access Interference (MAI) and the Multipath Fading (MPF) restrict the performance of Code-Division Multiple-Access (CDMA) systems. The Multiuser Detection (MUD) based on Particle Swarm Optimization algorithm (PSO) with Rake processing is proposed in this paper to overcome these obstacles, followed by full details of how to apply the Binary PSO MUD (BPSO-MUD) on a CDMA system. Simulations show that the BPSO-MUD has significantly better performance than the Conventional Detection (CD).