The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] component labeling(3hit)

1-3hit
  • A Fast Multi-Object Extraction Algorithm Based on Cell-Based Connected Components Labeling

    Qingyi GU  Takeshi TAKAKI  Idaku ISHII  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    636-645

    We describe a cell-based connected component labeling algorithm to calculate the 0th and 1st moment features as the attributes for labeled regions. These can be used to indicate their sizes and positions for multi-object extraction. Based on the additivity in moment features, the cell-based labeling algorithm can label divided cells of a certain size in an image by scanning the image only once to obtain the moment features of the labeled regions with remarkably reduced computational complexity and memory consumption for labeling. Our algorithm is a simple-one-time-scan cell-based labeling algorithm, which is suitable for hardware and parallel implementation. We also compared it with conventional labeling algorithms. The experimental results showed that our algorithm is faster than conventional raster-scan labeling algorithms.

  • Simulation Algorithms among Enhanced Mesh Models

    Susumu MATSUMAE  Nobuki TOKURA  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E82-D No:10
      Page(s):
    1324-1337

    In this paper, we present simulation algorithms among enhanced mesh models. The enhanced mesh models here include reconfigurable mesh and mesh with multiple broadcasting. A reconfigurable mesh (RM) is a processor array that consists of processors arranged to a 2-dimensional grid with a reconfigurable bus system. The bus system can be used to dynamically obtain various interconnection patterns among the processors during the execution of programs. A horizontal-vertical RM (HV-RM) is obtained from the general RM model, by restricting the network topology it can take to the ones in which each bus segment must be along row or column. A mesh with multiple broadcasting (MWMB) is an enhanced mesh, which has additional broadcasting buses endowed to every row and column. We present two algorithms:1) an algorithm that simulates a HV-RM of size nn time-optimally in θ(n) time on a MWMB of size nn, and 2) an algorithm that simulates a RM of size nn in θ(log2 n) time on a HV-RM of size nn. Both algorithms use a constant number of storage in each processor. Furthermore, we show that a RM of size nn can be simulated in θ((n/m)2 log n log m) time on a HV-RM of size mm, in θ ((n/m)2 m log n log m) time on a MWMB of size mm (m < n). These simulations use θ((n/m)2) storage in each processor, which is optimal.

  • Quantitative Evaluation of Improved Global Interpolation in the Segmentation of Handwritten Numbers Overlapping a Border

    Satoshi NAOI  Misako SUWA  Maki YABUKI  

     
    PAPER-Segmentation

      Vol:
    E79-D No:5
      Page(s):
    456-463

    The global interpolation method we proposed can extract a handwritten alpha-numeric character pattern even if it overlaps a border. Our method interpolates blank segments in a character after borders are removed by evaluating segment pattern continuity and connectedness globally to produce characters with smooth edges. The main feature of this method is to evaluate global component label connectivity as pattern connectedness. However, it is impossible for the method to interpolate missing superpositioning loop segments, because they lack segment pattern continuity and they have already had global component label connectivity. To solve this problem, we improved the method by adding loop interpolation as a global evaluation. The evaluation of character segment continuity is also improved to achieve higher quality character patterns. There is no database of overlapping characters, so we also propose an evaluation method which generates various kinds of overlapping numerals from an ETL database. Experimental results using these generated patterns showed that the improved global interpolation method is very effective for numbers that overlap a border.