The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] contactor(12hit)

1-12hit
  • Influence of Arc Discharge on Contact Resistance of AgNi Contacts for Electromagnetic Contactors

    Kiyoshi YOSHIDA  Koichiro SAWA  Kenji SUZUKI  Masaaki WATANABE  

     
    BRIEF PAPER

      Vol:
    E95-C No:9
      Page(s):
    1531-1534

    Experiments were carried out at several voltages to clarify the influence of the voltage on various characteristics, i.e. arc duration, contact resistance, arc energy, and the change in electrode mass. The voltage was varied from DC100 V to 160 V, the load current was fixed at 5 A constant, and the electromagnetic contactor was operated continuously up to 100,000 times. The experiments were carried out under the three operation modes which are classified by the arc discharge. As a result, the relation between the operation mode and contact resistance was clarified. When only a make arc was generated, the contact resistance was smallest. In addition, the contact resistance was not affected by the source voltage.

  • Influence of Voltage on Arc Characteristics and Electrode Mass Change of AgNi Contacts for Electromagnetic Contactors

    Kiyoshi YOSHIDA  Koichiro SAWA  Kenji SUZUKI  Masaaki WATANABE  

     
    PAPER

      Vol:
    E94-C No:9
      Page(s):
    1395-1401

    Recently, photovoltaic power systems and electric vehicles have been commonly used. Therefore, the importance of DC (direct current) switching is expected to increase in the near future. The authors have been examining a method of evaluating the electrode loss of AgNi contacts for an electromagnetic contactor with a medium DC load current at a resistive circuit. In this study, the arc energy and electrode mass changes were investigated in more detail. We carried out experiments of 100,000 operations for an electromagnetic contactor at a load current of 5 A constant with a source voltage change from 100 to 160 V. The arc duration, contact resistance, arc energy, and electrode mass changes were measured. As a result, the arc duration was found out increase with the source voltage. In addition, the stationary cathode mass change (loss) increased proportion only to the total arc energy. However, the stationary cathode loss per unit arc energy decreased at the highest source voltage.

  • Thermal Simulation of a Contactor with Feedback Controlled Magnet System

    Liang JI  Degui CHEN  Yingyi LIU  Xingwen LI  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1424-1430

    Similarities and differences of the thermal analysis issues between the intelligent and general AC contactors are analyzed. Heat source model of the magnet system is established according to the unique control mode of the intelligent AC contactor. Linking with the features common of the two kinds of contactors, the extension of the thermal analysis method of the general AC contactor to the intelligent AC contactor is demonstrated. Consequently, a comprehensive thermal analysis model considering heat sources of both main circuit and magnet system is constructed for the intelligent AC contactor. With this model, the steady-state temperature rise of the intelligent AC contactor is calculated and compared with the measurements of an actual intelligent AC contactor.

  • Prognostic and Diagnostic Technology for DC Actuated Contactors and Motor Starters

    Xin ZHOU  Lian ZOU  Roger BRIGGS  

     
    PAPER-Contactors

      Vol:
    E92-C No:8
      Page(s):
    1045-1051

    Unpredicted contactor failure can interrupt production and affect the uptime and throughput of manufacturing. Usually the life of a contactor is based on the manufacturers' life test data. However, due to the way of how the contactor is operated and the environment it is operated in, the working life of a contactor can vary significantly. In this paper, a novel technology has been investigated to predict potential failures of DC actuated contactors by monitoring their DC coil current and contactor currents. Three parameters are derived from this set of data to monitor the health of contactors: contact over-travel, armature pull-in time and coil current differential. Contact over-travel provides information on the remaining life of contacts and coil current differential provides indication of contact weld and carrier jam due to debris. The armature pull-in time provides information on contactor closing speed. Prototype contactors have been built and AC4 tests have been carried out for evaluation. Test results show that the contact over-travel parameter agrees well with contact mass loss data taken after contactors failed. The derived armature pull-in time agrees well with that measured by a laser displacement sensor. The defined parameters provide effective monitoring and prediction of potential contactor failures.

  • Simulation and Analysis for a Permanent Contactor with and without Current-Feedback System

    Degui CHEN  Yingyi LIU  Liang JI  Chunping NIU  

     
    PAPER-Contactors

      Vol:
    E92-C No:8
      Page(s):
    1040-1044

    According to a new kind of permanent contactor, this paper analyses the dynamic behavior of the contactor with and without current-feedback system. And it presents a method to obtain the dynamic characteristics of the contactor with current-feedback system. The experiments prove that the method is correct. Then, it compares the contactor without current-feedback system with the one with current-feedback system. The result shows that the contactor with current-feedback system can avoid this flaw of the contactor without current-feedback system.

  • Thermal Analysis of AC Contactor Using Thermal Network Finite Difference Analysis Method

    Chunping NIU  Degui CHEN  Xingwen LI  Yingsan GENG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E91-C No:8
      Page(s):
    1286-1291

    To predict the thermal behavior of switchgear quickly, the Thermal Network Finite Difference Analysis method (TNFDA) is adopted in thermal analysis of AC contactor in the paper. The thermal network model is built with nodes, thermal resistors and heat generators, and it is solved using finite difference method (FDM). The main circuit and the control system are connected by thermal resistors network, which solves the problem of multi-sources interaction in the application of TNFDA. The temperature of conducting wires is calculated according to the heat transfer process and the fundamental equations of thermal conduction. It provides a method to solve the problem of boundary conditions in applying the TNFDA. The comparison between the results of TNFDA and measurements shows the feasibility and practicability of the method.

  • Analysis and Optimization for a Contactor with Feedback Controlled Magnet System

    Yingyi LIU  Degui CHEN  Chunping NIU  Liang JI  Weixiong TONG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E91-C No:8
      Page(s):
    1273-1279

    In the optimum design of AC contactors, it is important to analyze the dynamic behavior. Moreover, movable contact and core bounces have remarkable effect on the lifetime of contactors. According to a new kind of contactor with feedback controlled magnet system, this paper builds two different sets of periodically inter-transferred equations to obtain the dynamic characteristics of the contactor. The equations describe the coupling of the electric circuit, electromagnetic field and mechanical system taking account of the influence of friction. Then, the paper gives an optimum design to the dimension and the duty ratio of the contactor' pulse modulated wave (PWM) under different exciting, and proves, by experiment and simulation, that the bounce time of the contactor working in the optimized duty ratio is much less than that of the general AC contactors.

  • Dynamic Characteristic Analysis and Optimization for the Energy-Saving and Bounce-Reducing Double-Coil Contactor

    Degui CHEN  Yingyi LIU  Weixiong TONG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E89-C No:8
      Page(s):
    1194-1200

    In the optimum design of contactors, it is important to analyze the dynamic behaviors. In this paper, it proposes a new computational approach for analyzing dynamic characteristic of the energy-saving and bouncing-reducing double-coil contactor. According to the contactor's unique characteristic that it has two transferable coils, the paper builds two different sets of equations. One describes the period before the transfer position, and the other describes the period after the transfer position. The equations deal with the electrical circuit, electromagnetic field that can be calculated by using 3-D finite element method and mechanical system considering the influence of friction. The validity of the proposed method is confirmed by experiment. Finally, the paper gives an optimum design for the transfer position of the two coils. The result of the optimum design reduces both of the first and the second bounces of the movable contact.

  • Experimental Investigation on the Arc Motion with Different Configurations of Quenching Chamber in AC Contactor

    Degui CHEN  Ruicheng DAI  Xingwen LI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E89-C No:8
      Page(s):
    1201-1205

    Two dimensional optical fiber measurement system is used to investigate experimentally the arc motion and reignition with four different configurations of quenching chamber in an AC contactor. It demonstrates that the splitter plate arrangement has significant effect on the arc motion in arc quenching chamber, and fixing arc runner in the first and last splitter plates benefits to arc motion, and increase the dielectric recovery strength. The results are very useful to design the quenching chamber in AC contactor with high performance.

  • Static and Dynamic Analysis for Contactor with a New Type of Permanent Magnet Actuator

    Mingzhe RONG  Jianyong LOU  Yiying LIU  Jian LI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E89-C No:8
      Page(s):
    1210-1216

    A new type of permanent magnet actuator driven by electromagnetic repulsive force in breaking course and electromagnetic attraction force during closing course is presented in this paper, and the static and dynamic characteristics for contactor with this new type actuator are mainly focused on by simulation and experiment simultaneously. Firstly, the static electromagnetic attraction force in closing course and electromagnetic repulsive force in breaking course are studied by FEM simulation and experiment. Secondly, by coupling of the electrical and mechanical differential equations, the dynamic electromagnetic attraction force in closing course and dynamic electromagnetic repulsive force in breaking course are obtained respectively. Thirdly, by constructing the mechanical model of contact system and permanent magnet actuator, the displacements of moving contact and moving core while both contactors' closing and breaking are obtained by simulation and experimental study. It is indicated that simulation results coincide well with that of experiment.

  • Measurement of the Dielectric Recovery Strength and Reignition of AC Contactors

    Degui CHEN  Xingwen LI  Ruicheng DAI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E88-C No:8
      Page(s):
    1641-1646

    In order to understand the recovery characteristics of AC contactors and improve their performance, experimental measurements were used to investigate the arcing gap recovery process including dielectric recovery strength and reignition, to a pair of splitter plate together and four kinds of arc chamber of AC contactors. A special circuit was designed to perform the work. It demonstrates that under lower current, the dielectric recovery strengths of all kinds of arc chambers in the paper have no significant difference. However, with the increase of current, the difference of dielectric recovery strengths of them is much clear. The reignition characteristics of a pair of splitter plate and arc chambers are similar. With different configurations of arc chambers and prospective currents, the forms of post current zero reignition are distinct.

  • Numerical Analysis and Experimental Investigation of Dynamic Behavior of AC Contactors Concerning with the Bounce of Contact

    Xingwen LI  Degui CHEN  Zhipeng LI  Weixiong TONG  

     
    INVITED PAPER

      Vol:
    E87-C No:8
      Page(s):
    1318-1323

    In the optimum design of AC contactors, it is necessary to analyze the dynamic behavior. Moreover, movable contacts and core bounce have remarkable effect on the lifetime of contactors. A set of differential equations describes the coupling of the electric circuit, electromagnetic field and mechanical system taking account into bounce and the influence of friction. With virtual prototyping technology, the dynamic behavior, especially for contacts bounce, has been investigated according to different electrical circuit parameters. Two approaches are introduced to solve electromagnetic parameters. Based on 3D finite element static nonlinear analysis, the flux linkage and electromagnetic force can be evaluated with different air gap and exciting current for larger gap. In addition, concerning to the shading coil for smaller gap, magnetic circuit can facilitate the calculation. The validity of the proposed method is confirmed by experiments.