The search functionality is under construction.

Keyword Search Result

[Keyword] contrast sensitivity function(4hit)

1-4hit
  • Comparative Study on Required Bit Depth of Gamma Quantization for Digital Cinema Using Contrast and Color Difference Sensitivities

    Junji SUZUKI  Isao FURUKAWA  

     
    PAPER-Image

      Vol:
    E96-A No:8
      Page(s):
    1759-1767

    A specification for digital cinema systems which deal with movies digitally from production to delivery as well as projection on the screens is recommended by DCI (Digital Cinema Initiative), and the systems based on this specification have already been developed and installed in theaters. The parameters of the systems that play an important role in determining image quality include image resolution, quantization bit depth, color space, gamma characteristics, and data compression methods. This paper comparatively discusses a relation between required bit depth and gamma quantization using both of a human visual system for grayscale images and two color difference models for color images. The required bit depth obtained from a contrast sensitivity function against grayscale images monotonically decreases as the gamma value increases, while it has a minimum value when the gamma is 2.9 to 3.0 from both of the CIE 1976 L* a* b* and CIEDE2000 color difference models. It is also shown that the bit depth derived from the contrast sensitivity function is one bit greater than that derived from the color difference models at the gamma value of 2.6. Moreover, a comparison between the color differences computed with the CIE 1976 L* a* b* and CIEDE2000 leads to a same result from the view point of the required bit depth for digital cinema systems.

  • Video Quality Assessment Using Spatio-Velocity Contrast Sensitivity Function

    Keita HIRAI  Jambal TUMURTOGOO  Ayano KIKUCHI  Norimichi TSUMURA  Toshiya NAKAGUCHI  Yoichi MIYAKE  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:5
      Page(s):
    1253-1262

    Due to the development and popularization of high-definition televisions, digital video cameras, Blu-ray discs, digital broadcasting, IP television and so on, it plays an important role to identify and quantify video quality degradations. In this paper, we propose SV-CIELAB which is an objective video quality assessment (VQA) method using a spatio-velocity contrast sensitivity function (SV-CSF). In SV-CIELAB, motion information in videos is effectively utilized for filtering unnecessary information in the spatial frequency domain. As the filter to apply videos, we used the SV-CSF. It is a modulation transfer function of the human visual system, and consists of the relationship among contrast sensitivities, spatial frequencies and velocities of perceived stimuli. In the filtering process, the SV-CSF cannot be directly applied in the spatial frequency domain because spatial coordinate information is required when using velocity information. For filtering by the SV-CSF, we obtain video frames separated in spatial frequency domain. By using velocity information, the separated frames with limited spatial frequencies are weighted by contrast sensitivities in the SV-CSF model. In SV-CIELAB, the criteria are obtained by calculating image differences between filtered original and distorted videos. For the validation of SV-CIELAB, subjective evaluation experiments were conducted. The subjective experimental results were compared with SV-CIELAB and the conventional VQA methods such as CIELAB color difference, Spatial-CIELAB, signal to noise ratio and so on. From the experimental results, it was shown that SV-CIELAB is a more efficient VQA method than the conventional methods.

  • A Development of the TFT-LCD Image Defect Inspection Method Based on Human Visual System

    Jong-Hwan OH  Byoung-Ju YUN  Se-Yun KIM  Kil-Houm PARK  

     
    PAPER

      Vol:
    E91-A No:6
      Page(s):
    1400-1407

    The TFT-LCD image has non-uniform brightness that is the major difficulty of finding the visible defect called Mura in the field. To facilitate Mura detection, background signal shading should level off and Mura signal must be amplified. In this paper, Mura signal amplification and background signal flattening method is proposed based on human visual system (HVS). The proposed DC normalized contrast sensitivity function (CSF) is used for the Mura signal amplification and polynomial regression (PR) is used to level off the background signal. In the enhanced image, tri-modal thresholding segmentation technique is used for finding Dark and White Mura at the same time. To select reliable defect, falsely detected invisible region is eliminated based on Weber's Law. By the experimental results of artificially generated 1-d signal and TFT-LCD image, proposed algorithm has novel enhancement results and can be applied to real automated inspection system.

  • Defect Detection of TFT-LCD Image Using Adapted Contrast Sensitivity Function and Wavelet Transform

    Jong-Hwan OH  Woo-Seob KIM  Chan-Ho HAN  Kil-Houm PARK  

     
    LETTER

      Vol:
    E90-C No:11
      Page(s):
    2131-2135

    The thin film transistor liquid crystal display (TFT-LCD) image has nonuniform brightness, which is a major difficulty in finding the Mura defect region. To facilitate Mura segmentation, globally widely varying background signal must be flattened and then Mura signal must be enhanced. In this paper, Mura signal enhancement and background-signal-flattening methods using wavelet coefficient processing are proposed. The wavelet approximation coefficients are used for background-signal flattening, while wavelet detail coefficients are employed to magnify the Mura signal on the basis of an adapted contrast sensitivity function (CSF). Then, for the enhanced image, trimodal thresholding segmentation technique and a false-region elimination method based on the human visual system (HVS) are employed for reliable Mura segmentation. The experimental results show that the proposed algorithms produce promising results and can be applied to automated inspection systems for finding Muras in a TFT-LCD image.