1-3hit |
Koji NAKAO Katsunari YOSHIOKA Takayuki SASAKI Rui TANABE Xuping HUANG Takeshi TAKAHASHI Akira FUJITA Jun'ichi TAKEUCHI Noboru MURATA Junji SHIKATA Kazuki IWAMOTO Kazuki TAKADA Yuki ISHIDA Masaru TAKEUCHI Naoto YANAI
In this paper, we developed the latest IoT honeypots to capture IoT malware currently on the loose, analyzed IoT malware with new features such as persistent infection, developed malware removal methods to be provided to IoT device users. Furthermore, as attack behaviors using IoT devices become more diverse and sophisticated every year, we conducted research related to various factors involved in understanding the overall picture of attack behaviors from the perspective of incident responders. As the final stage of countermeasures, we also conducted research and development of IoT malware disabling technology to stop only IoT malware activities in IoT devices and IoT system disabling technology to remotely control (including stopping) IoT devices themselves.
This letter proposes a comprehensive assessment of the mission-level damage caused by cyberattacks on an entire defense mission system. We experimentally prove that our method produces swift and accurate assessment results and that it can be applied to actual defense applications. This study contributes to the enhancement of cyber damage assessment with a faster and more accurate method.
Razvan BEURAN Cuong PHAM Dat TANG Ken-ichi CHINEN Yasuo TAN Yoichi SHINODA
Given the worldwide proliferation of cyberattacks, it is imperative that cybersecurity education and training are addressed in a timely manner. These activities typically require trainees to do hands-on practice in order to consolidate and improve their skills, for which purpose training environments called cyber ranges are used. In this paper we present an open-source system named CyRIS (Cyber Range Instantiation System) that supports this endeavor by fully automating the training environment setup, thus making it possible for any organization to conduct more numerous and variate training activities. CyRIS uses a text-based representation in YAML format to describe the characteristics of the training environment, including both environment setup and security content generation. Based on this description, CyRIS automatically creates the corresponding cyber range instances on a computer and network infrastructure, for simultaneous use by multiple trainees. We have evaluated CyRIS in various realistic scenarios, and our results demonstrate its suitability for cybersecurity education and training, both in terms of features and performance, including for large-scale training sessions with hundreds of participants.