The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dc motor(8hit)

1-8hit
  • Observation of Arc Discharges Occurring between Commutator and Brush Simulating a DC Motor by Means of a High-Speed Camera

    Ryosuke SANO  Junya SEKIKAWA  

     
    PAPER

      Pubricized:
    2021/06/09
      Vol:
    E104-C No:12
      Page(s):
    673-680

    Observed results of arc discharges generated between the brush and commutator are reported. The motion of the arc discharges was observed by a high-speed camera. The brush and commutator were installed to an experimental device that simulated the rotational motion of a real DC motor. The aim of this paper is to investigate the occurring position, dimensions, and moving characteristics of the arc discharges by means of high-speed imaging. Time evolutions of the arc voltage and current were measured, simultaneously. The arc discharges were generated when an inductive circuit was interrupted. Circuit current before interruption was 4A. The metal graphite or graphite brush and a copper commutator were used. Following results were obtained. The arc discharge was dragged on the brush surface and the arc discharge was sticking to the side surface of the commutator. The positions of the arc spots were on the end of the commutator and the center of the brush in rotational direction. The dimensions of the arc discharge were about 0.2 mm in length and about 0.3 mm in width. The averaged arc voltage during arc duration became higher and the light emission from the arc discharge became brighter, as the copper content of the cathode decreased.

  • Rapid Revolution Speed Control of the Brushless DC Motor for Automotive LIDAR Applications

    Hironobu AKITA  Tsunenobu KIMOTO  

     
    PAPER-Storage Technology

      Pubricized:
    2020/01/10
      Vol:
    E103-C No:6
      Page(s):
    324-331

    A laser imaging detection and ranging (LIDAR) is one of the key sensors for autonomous driving. In order to improve its performance of the measurable distance, especially toward the front-side direction of the vehicle, this paper presents rapid revolution speed control of a brushless DC (BLDC) motor with a cyclostationary command signal. This enables the increase of the signal integration time for the designated direction, and thus improves the signal-to-noise ratio (SNR), while maintaining the averaged revolution speed. We propose the use of pre-emphasis circuits to accelerate and decelerate the revolution speed of the motor rapidly, by modifying the command signal so as to enhance the transition of the speed. The adaptive signal processing can adjust coefficients of the pre-emphasis filter automatically, so that it can compensate for the decayed response of the motor and its controller. Experiments with a 20-W BLDC motor prove that the proposed technique can achieve the actual revolution speed output to track the designated speed profile ranging from 600 to 1400 revolutions per minute (rpm) during one turn.

  • Commutation Phenomena and Brush Wear of DC Motor at High Speed Rotation

    Masayuki ISATO  Koichiro SAWA  Takahiro UENO  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    716-722

    Many DC commutator motors are widely used in automobiles. In recent years, as compact and high output DC motors have been developed due to advanced technology, the faster the rotational speed is required and the commutation arc causes a high rate of wear/erosion of brush and commutator. Therefore, it is important how the motor speed influences commutation phenomena such as arc duration, residual current and erosion and wear of commutator and brush in order to achieve high reliability and extensive lifespan. In this paper waveforms of commutation voltage and current are measured at the rotation speed of 1000 to 5000min-1and the relation between rotation speed and arc duration / residual current is obtained. In addition long term tests are carried out at the rotation speed of 1000 to 5000min-1 the change of arc duration and effective commutation period is examined during the test of 20hours. Further, brush wear is evaluated by the difference of brush length between before and after test. Consequently, it can be made clear that as the speed increases, the effective commutation period decreases and the arc duration is almost same at the speed up to 3000min-1 and is around 42µsec.

  • A Practical Extended Harmonic Disturbance Observer Design for Robust Current Control of Speed Sensorless DC Motor Drives

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:6
      Page(s):
    1243-1246

    An extended harmonic disturbance observer is designed for speed (or position) sensorless current control of DC motor subject to a biased sinusoidal disturbance and parameter uncertainties. The proposed method does not require the information on the mechanical part of the motor equation. Theoretical analysis via the singular perturbation theory is performed to verify that the feedforward compensation using the estimation can improve the robust transient performance of the closed-loop system. A stability condition is derived against parameter uncertainties. Comparative experimental results validate the robustness of the proposed method against the uncertainties.

  • Experiment on Driving a Low-Power DC Motor by Microwave Power Transfer in Continuous-Wave and Pulsed-Wave

    Yong HUANG  Tomohiko MITANI  Takaki ISHIKAWA  Naoki SHINOHARA  

     
    PAPER-Power Applications

      Vol:
    E98-C No:7
      Page(s):
    693-700

    In order to efficiently drive a low-power DC motor using microwave power transfer (MPT), a compact power-receiving device is developed, which consists of a rectenna array and an improved DC-DC converter with constant input resistance characteristics. Since the conversion efficiency of the rectenna is strongly affected by the output load, it is difficult to efficiently drive a dynamic load resistance device such as DC motor. Using both continuous-wave (CW) and pulsed-wave MPT, experiments are carried out on driving the DC motor whose load resistance is varying from 36 to 140 Ω. In the CW case, the measured overall efficiency of the power-receiving device is constant over 50% for the power density of 0.25 to 2.08 mW/cm2. In particular, the overall efficiency is 62%, 70.8% for the power density of 0.25, 0.98 mW/cm2 where the received power of the single antenna is 13, 50 mW, respectively. In the pulsed-wave case, the measured overall efficiency is over 44% for a duty ratio of 0.2 to 1 for the power density of 0.98 mW/cm2.

  • Adding Robustness to Cascade Control of DC Motor Velocity via Disturbance Observers

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:6
      Page(s):
    1305-1309

    Since the conventional cascade controller for electric motor drives requires accurate information about the system parameters and load conditions to achieve a desired performance, this paper presents a new practical control structure to improve the robust performance against parameter uncertainties. Two first-order disturbance observers (DOB) are incorporated with the cascade structure, to preserve the nominal performance. The analysis of the robust performance of the DOB is presented by using the singular perturbation theory. Simulation results suggest that the proposed controller can be used effectively as an additional compensator to the conventional cascade scheme.

  • A Study on Wear of Brush and Carbon Flat Commutator of DC Motor for Automotive Fuel Pump

    Koichiro SAWA  Takahiro UENO  Hidenori TANAKA  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1443-1448

    In an automotive fuel pump system, a small DC motor is widely used to drive the pump and driven by a automotive battery. Recently a bio-fuel, usually a mixture of gasoline and ethanol has been used due to shortage of gasoline and environmental aspect. It affects strongly the performances of a DC motor, especially commutation phenomena, what kind of fuel is used. Therefore the authors have started to investigate the influence of ethanol on the commutation phenomena. They have been reporting the wear of brush and carbon flat commutator in gasoline and ethanol so far. In this paper commutation period, arc duration, brush and commutator wear are examined in ethanol 50-gasoline 50%. Brush wears are very small compared with the previous results. Namely in the present test a mechanical sliding wear is predominant rather than erosion by arc due to short arc duration. Further, an area eroded by arc is observed to re-appear as a sliding surface. From these results a threshold arc energy between arc erosion and mechanical sliding wear is obtained, and a wear model is proposed to explain the above wear pattern on the sliding surface.

  • Induced Noise from Arc Discharge and Its Simulation

    Hiroshi INOUE  

     
    INVITED PAPER

      Vol:
    E79-B No:4
      Page(s):
    462-467

    Induced noises from breaking contact arc discharge and sliding contact discharge of dc motor are measured by pick up coil and current probe. Statistical properties, amplitude distribution probability (APD), of induced noise waveform are analyzed by simple method using intermediate frequency of spectrum analyzer. It is shown that APD characteristics can be used to estimate statistical characteristics and peak value of induced noise. Simulation model of the noise made by the combination of Gaussian noise is mentioned. The model called the composite noise generator (CNG) can be good fit to the real characteristics of both noises from breaking arc and dc motor. Applications of the CNG for noise filter using toroidal coil shows that the CNG is useful to realize the test of noise suppression characteristics. What parameters of the CNG should be considered is described for further applications.