The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] design of experiment(2hit)

1-2hit
  • Novel Multi-Objective Design Approach for Cantilever of Relay Contact Using Preference Set-Based Design Method

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Pubricized:
    2020/07/03
      Vol:
    E103-C No:12
      Page(s):
    713-717

    In the design of electrical contacts, it is required to pursue a solution which satisfies simultaneously multi-objective (electrical, mechanical, and thermal) performances including conflicting requirements. Preference Set-Based Design (PSD) has been proposed as practical procedure of the fuzzy set-based design method. This brief paper newly attempts to propose a concurrent design method by PSD to electrical contact, specifically a design of a shape of cantilever in relay contacts. In order to reduce the calculation (and/or experimental) cost, this paper newly attempt to apply Design of Experiments (DoE) for meta-modeling to PSD. The number of the calculation for the meta-modeling can be reduced to $ rac{1}{729}$ by using DoE. The design parameters (width and length) of a cantilever for drive an electrical contact, which satisfy required performance (target deflection), are obtained in ranges successfully by PSD. The validity of the design parameters is demonstrated by numerical modeling.

  • Coloured Petri Net Based Modelling and Analysis of Multiple Product FMS with Resource Breakdowns and Automated Inspection

    Tauseef AIZED  Koji TAKAHASHI  Ichiro HAGIWARA  

     
    PAPER-Concurrent Systems

      Vol:
    E90-A No:11
      Page(s):
    2593-2603

    The objective of this paper is to analyze a pull type multi-product, multi-line and multi-stage flexible manufacturing system whose resources are subject to planned and unplanned breakdown conditions. To ensure a continual supply of the finished products, under breakdown conditions, parts/materials flow through alternate routes exhibiting routing flexibility. The machine resources are flexible in this study and are capable of producing more than one item. Every machining and assembly station has been equipped with automated inspection units to ensure the quality of the products. The system is modelled through coloured Petri net methodology and the impact of input factors have been shown on the performance of the system. The study has been extended to explore near-optimal conditions of the system using design of experiment and response surface methods.