The search functionality is under construction.

Author Search Result

[Author] Yoshiki KAYANO(29hit)

1-20hit(29hit)

  • Experimental Extraction Method for Primary and Secondary Parameters of Shielded-Flexible Printed Circuits

    Taiki YAMAGIWA  Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/02/28
      Vol:
    E105-B No:8
      Page(s):
    913-922

    In this paper, an experimental method is proposed for extracting the primary and secondary parameters of transmission lines with frequency dispersion. So far, there is no report of these methods being applied to transmission lines with frequency dispersion. This paper provides an experimental evaluation means of transmission lines with frequency dispersion and clarifies the issues when applying the proposed method. In the proposed experimental method, unnecessary components such as connectors are removed by using a simple de-embedding method. The frequency response of the primary and secondary parameters extracted by using the method reproduced all dispersion characteristics of a transmission line with frequency dispersion successfully. It is demonstrated that an accurate RLGC equivalent-circuit model is obtained experimentally, which can be used to quantitatively evaluate the frequency/time responses of shielded-FPC with frequency dispersion and to validate RLGC equivalent-circuit models extracted by using electromagnetic field analysis.

  • A Study on Separation of Heat Generation and Heat Transfer Related to Temperature Rise of Silver Palladium Contact

    Kazuaki MIYANAGA  Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER-Contact Phenomena

      Vol:
    E89-C No:8
      Page(s):
    1129-1135

    In this paper, the separation of heat generation and heat transfer related to temperature rise of silver palladium contact was investigated experimentally in order to predict the temperature rise of contact by the use conditions such as voltage range between 25 to 40 V, current range between 3.2 to 5.0 A and silver palladium alloy (AgPd) materials. Firstly, relationship between temperature rise of contact and supply power was discussed. The effects of heat generation and heat transfer on temperature rise were separated and quantified by least squares method. Secondly, effects of durations and integral powers of bridge and arc on temperature rise were also discussed by changing supply power. Results show that the integral power of the bridge increases when supply power increases. As the supply power increases, integral power of arc also increases. The temperature rise is dominated by integral power of bridge. Remarkable difference of bridge duration can not be seen in the five materials (AgPd30, AgPd40, AgPd50, AgPd70 and Pd). The supply power is increased, arc duration gets longer. As weight percent of Pd content increases, the effect of supply power on arc duration becomes larger. Consequently, the integral power of arc increases. This study is a basic consideration to realize methods predicting temperature rise of contact.

  • Embedded F-SIR Type Transmission Line with Open-Stub for Negative Group Delay Characteristic

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E99-C No:9
      Page(s):
    1023-1026

    Negative group delay characteristics can be used to improve signal-integrity performance such as equalizer for compensation of the group delay of transmission line (TL). This brief-paper newly attempts to propose a concept of the embedded Folded-Stepped Impedance Resonator (F-SIR) structure with open-stub resonator, for negative group delay and slope characteristics at high-frequency as well as low-insertion loss. The concept of the proposed TL is based on the combination of resonance and anti-resonance due to open-stub resonator in order to establish wideband negative group delay and negative slope characteristics. The proposed TL is fabricated on PCB, and then the concept is validated by measurement and simulation.

  • Effect of Heating Value on Contact Diameter at Low Speed Breaking Contact

    Kazuaki MIYANAGA  Yoshiki KAYANO  Tasuku TAKAGI  Hiroshi INOUE  

     
    LETTER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    1020-1022

    It is necessary to know how the contact voltage and contact area vary with time to clarify the physics of contact lifetime and contact resistance. In this paper, to clarify the effect of the heating value on the diameter of the contact area, the variations of the contact voltage and contact diameter with time are measured at a low-speed breaking contact near the thermal equilibrium condition under which a stable bridge is generated. The effect of the heating value on the relationship between the contact diameter and the length of the bridge at breaking is also discussed. In the results, the contact voltage waveform was found to be macroscopically proportional to the displacement of the moving electrode lc. On the other hand, the contact diameter dc decreased slightly with increasing lc. At all currents investigated dc decreased when lc increased. The length of the bridge at breaking was increased by increasing the current. A large heating value of the contact area resulted in a long bridge because the volume of the melted metal increases.

  • Identifying the Frequency Response of Common-Mode Current on a Cable Attached to a PCB

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Measurement and Evaluation

      Vol:
    E87-C No:8
      Page(s):
    1268-1276

    Common-mode (CM) current on a feed cable attached to printed circuit board (PCB), which is one of main source of undesired electromagnetic radiation problem, is investigated by experimental and finite-difference time-domain (FDTD) modeling. In this paper, frequency responses of CM current on PCB and feed cable are modeled and analyzed as an electromagnetic interference (EMI) antenna, which depends on the configuration of PCB with a wire cable. Several different configurations are prepared to demonstrate the effect of PCB dimension on resonance frequencies of CM current. In the results, EMI antenna in the frequency band around the first resonance frequency was comprised of the ground plane and cable. In order to explain the frequency response of CM current, two EMI antenna models are proposed and demonstrated. EMI antenna is comprised of the ground plane and cable, and the other EMI antenna is comprised of the trace on the ground plane. It is suggested that the result is one of basic consideration for the ground plane with cable that have high EMI problem and resonance frequency of CM current.

  • Experimental Analysis of Arc Waveform Affected by Holder Temperature Change at Slowly Separation of Silver-Tin Dioxide Contacts

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    PAPER

      Vol:
    E96-C No:9
      Page(s):
    1110-1118

    Arc discharge at breaking electrical contact is considered as a main source of not only degradation of the electrical property but also an undesired electromagnetic (EM) noise. In order to clarify the effect of holder temperature on the bridge and arc-duration, opening-waveforms at slowly separating silver-tin dioxide contact with different holder temperature are measured and discussed experimentally in this paper. Firstly, as opening-waveforms, the contact voltage, the contact current and the movement of moving contact related to the gap length are measured simultaneously. Secondly, the relationship between temperature of the holder and duration of the arc was quantified experimentally. It was revealed that as the initial temperature of the holder becomes higher, arc-duration becomes slightly longer. More importantly, the holder temperature dependencies of percentage of each-phase (metallic and gaseous-phases) are different with different closed-current.

  • Evaluation Method of Voltage and Current Distributions on Asymmetrical and Equi-Length Differential-Paired Lines

    Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER

      Pubricized:
    2020/05/27
      Vol:
    E103-C No:11
      Page(s):
    597-604

    For actual multi-channel differential signaling system, the ideal balance or symmetrical topology cannot be established, and hence, an imbalance component is excited. However a theoretical analysis method of evaluating the voltage and current distribution on the differential-paired lines, which allows to anticipate EM radiation at the design stage and to study possible means for suppressing imbalance components, has not been implemented. To provide the basic considerations for electromagnetic (EM) radiation from practical asymmetrical differential-paired lines structure with equi-length routing used in high-speed board design, this paper newly proposes an analytical method for evaluating the voltage and current at any point on differential-paired lines by expressing the differential paired-lines with an equivalent source circuit and an equivalent load circuit. The proposed method can predict S-parameters, distributions of voltage and current and EM radiation with sufficient accuracy. In addition, the proposed method provides enough flexibility for different geometric parameters and can be used to develop physical insights and design guidelines. This study has successfully established a basic method to effectively predict signal integrity and EM interference issues on a differential-paired lines.

  • A Method for Suppressing Duration and Electromagnetic Noise of Contact Breaking Arc by Applying Pressure

    Kazuaki MIYANAGA  Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER

      Vol:
    E95-C No:9
      Page(s):
    1487-1494

    The circuit switching device by the electrical contact needs the high reliability and long lifetime. The very important factor for the high reliability, long lifetime and electromagnetic noise of the electrical contact is to suppress the duration and electromagnetic noise of arc discharge. Usually, the suppression of arc duration method is applying the external magnetic field. But, this method was not able to suppress the metallic arc duration and increased the voltage fluctuation at arc duration. Therefore, the new method for suppressing the duration and noise for electrical contact is expected. In this paper, a new method for suppressing duration and EM noise of arc discharge by applying housing pressure is proposed. To investigate the availability of proposed method, the measurement and some considerations on arc duration, voltage-fluctuation and current noise up to GHz frequency band generated by breaking contact in the applied pressure relay housing are reported. Firstly, voltage waveform and duration of the arc are measured. The effects of the pressure in the relay housing on the duration of the metallic and gaseous phase arcs are discussed. Secondary, voltage fluctuation, the spectrogram of contact voltage and current noise up to GHz frequency band are discussed. In the results, the proposed method with applying pressure makes shorter both durations of metallic and gaseous phases. The shorter duration of metallic phase is an advantage of the proposed method beyond the applying external magnetic field. As the housing pressure is increase, the voltage fluctuation and current noise becomes smalls. The proposed method can suppress the voltage fluctuation as well as arc duration. Consequently, the proposed method is on of the good solution to suppress the duration and electromagnetic noise of the arc discharge from electrical contact and result of this study indicates the basic considerations necessary to ensure good lifetime and EMC designs for electrical contacts.

  • Left Hand Mode Transmission Line Characteristics Made by F-SIR Structure on PCB

    Ryosuke YANAGISAWA  Yoshiki KAYANO  Hiroshi INOUE  

     
    LETTER

      Vol:
    E93-B No:7
      Page(s):
    1855-1857

    Basic left hand mode transmission line (LH mode TL) characteristics made on PCB is an important future issue for the application of the EMC field. In this paper, possibility of a LH mode TL characteristic made by a folded-stepped impedance resonator (F-SIR) type is investigated experimentally and numerically. The experimental and calculated from FEM and equivalent circuit results indicate that some backward propagation characteristic and negative group delay can be established by F-SIR structure.

  • Effect of the Thermal Constant on Temperature Rise of Silver Palladium Alloy Contacts

    Kazuaki MIYANAGA  Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER-Contact Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1405-1411

    In this paper, a method of separating the effects of the thermal diffusivity, durations and integral powers of the bridge and arc on the temperature rise of AgPd contacts was proposed. First, the effects of the Pd content on the durations and integral powers of the bridge and arc, and the temperature rise of the contacts were discussed. Because the integral power of bridge was larger than that of the arc under our experimental conditions of 40 V open-circuit, 5 A close-circuit and 100 µm/s opening velocity, the temperature rise of the contacts was dominated by the bridge. No remarked difference in bridge duration can be seen among the six materials. Although the integral power of the bridge in the case of Pd was maximum, the maximum temperature rise of the contact was observed in the case of AgPd60. To clarify the contribution of each factor, the effect of thermal diffusivity on the temperature rise of the contact was evaluated by the finite-difference time-domain (FDTD) method. In the case of Pd, because its thermal diffusivity was largest, heat diffused rapidly. On the other hand, the thermal diffusivity in the case of AgPd60 was small, and heat diffused slowly to the holders. The maximum temperature rise was observed in the case of AgPd60. It was demonstrated that the proposed method of separating the effects of thermal diffusivity, durations and integral powers of the bridge and arc on the temperature rise of contacts is effective in enabling us to understand contact phenomena.

  • Current and Radiation Noise up to GHz Band Generated by Slowly Breaking Silver-Compound Contacts

    Yoshiki KAYANO  Tatsuya NAKAMURA  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    LETTER-Signal Transmission & Sensing

      Vol:
    E90-C No:7
      Page(s):
    1504-1506

    To clarify the mechanism of the generation of electromagnetic (EM) noise, current and radiation noise up to the GHz band generated by slowly breaking silver-compound contacts were investigated experimentally. The current and radiation noise at the GHz band were observed. It was demonstrated that the frequency spectrums of the current and radiation noise correspond to the frequency responses of the circuit admittance and radiation efficiency of the experimental setup, respectively. It was revealed that even if current noise at the GHz band is very small, it can cause a large EM radiation noise because of the high radiation efficiency. From the time-frequency domain characteristics of current noise, it was clarified that the peaks of current noise at 10 MHz band arise immediately after the initiation of the arc discharge and the transition from metallic phase to gaseous phase. On the other hand, the peak current noise above 100 MHz arises immediately after the initiation of the arc discharge.

  • Prediction of EM Radiation from a PCB Driven by a Connected Feed Cable

    Yoshiki KAYANO  Hiroshi INOUE  

     
    PAPER

      Vol:
    E92-B No:6
      Page(s):
    1920-1928

    Printed circuit boards (PCBs) driven by a connected feed cable are considered to be one of the main sources of the electromagnetic interference (EMI) from electronic devices. In this paper, a method for predicting the electromagnetic (EM) radiation from a PCB driven by a connected feed cable at up to gigahertz frequencies is proposed and demonstrated. The predictive model is based on the transmission line theory and current- and voltage-driven CM generation mechanisms with consideration of antenna impedance. Frequency responses of differential-mode (DM) and common-mode (CM) currents and far-electric field were investigated experimentally and with finite-difference time-domain (FDTD) modeling. First, the dominant component in total EM radiation from the PCB was identified by using the Source-Path-Antenna model. Although CM can dominate the total radiation at lower frequencies, DM is the dominant component above 3 GHz. Second, the method for predicting CM component at lower frequencies is proposed. And its validity was discussed by comparing FDTD calculated and measured results. Specifically, the relationship between the CM current and the terminating resistor was focused as important consequence for the prediction. Good agreement between the measured and predicted results shows the validity of the predicted results. The proposed model can predict CM current with sufficient accuracy, and also identify the primary coupling-mechanism of CM generation. Then far-electric field was predicted by using the proposed method, and it was demonstrated that outline of the frequency response of the undesired EM radiation from the PCB driven by the connected feed cable can be predicted with engineering accuracy (within 6 dB) up to 18 GHz. Finally, as example of application of equivalent circuit model to EMC design, effect of the width of the ground plane was predicted and discussed. The equivalent circuit model provides enough flexibility for different geometrical parameters and increases our ability to provide insights and design guidelines.

  • Experimental Study on Arc Motion and Voltage Fluctuation at Slowly Separating Contact with External DC Magnetic Field

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E97-C No:9
      Page(s):
    858-862

    Since electromagnetic (EM) noise resulting from an arc discharge disturbs other electric devices, parameters on electromagnetic compatibility, as well as lifetime and reliability, are important properties for electrical contacts. To clarify the characteristics and the mechanism of the generation of the EM noise, the arc column and voltage fluctuations generated by slowly breaking contacts with external direct current (DC) magnetic field, up to 20,mT, was investigated experimentally using Ag$_{90.7{ m wt%}}$SnO$_{2,9.3{ m wt}%}$ material. Firstly the motion of the arc column is measured by high-speed camera. Secondary, the distribution of the motion of the arc and contact voltage are discussed. It was revealed that the contact voltage fluctuation in the arc duration is related to the arc column motion.

  • Correspondence of Common- and Differential-Mode Components on EM Radiation from Surface Microstrip Line Structure

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Signal Transmission

      Vol:
    E88-C No:8
      Page(s):
    1688-1695

    It has been demonstrated that a common-mode (CM) current can dominate the EMI processes up to 1 GHz, despite the fact that a CM current is smaller than a differential-mode (DM) current. However, this description is insufficient to describe behavior above 1 GHz. In this paper, the correspondence of CM and DM components for total electromagnetic (EM) radiation from a printed circuit board (PCB) with surface microstrip line, which is commonly used in microwave integrated circuits, at gigahertz frequency is studied experimentally and with finite-difference time-domain (FDTD) modeling. In order to characterize the EM radiation, the frequency response of the CM current, the electric field near the PCB, and the electric far field are investigated. First, the frequency response of the CM current, near and far-fields for the PCB with an attached feed cable are compared up to 5 GHz. Although the CM current decreases above a few gigahertz, near and far electric fields increase as the frequency becomes higher. Second, in order to distinguish between CM and DM radiation at high frequency, the frequency response and the angle pattern of the far-field from a PCB without the feed cable are discussed. The results show that radiation up to 1 GHz is related to the CM component. However, depending on polarization and PCB geometry, radiation may be dominated by the DM rather than the CM component. The results indicate that the DM component may be more significant relative to the CM component, and the increase in EM radiation can not be predicted from only the frequency response of CM current. Therefore, identifying the dominant component is essential for suppressing the EM radiation. This study is a basic consideration to realize a technique which is effective on the suppression of the EM radiation from the PCB with an attached feed cable.

  • A Study on Dependency of Transmission Loss of Shielded-Flexible Printed Circuits for Differential Signaling

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    660-663

    In this paper, dependency of transmission loss of shielded-flexible printed circuits (FPC) for differential-signaling on thickness of conductive shield is studied by numerical modeling based on an equivalent circuit model compared with the experimental results. Especially, the transmission loss due to the thin conductive shield is focused. The insufficient shielding performance for near magnetic field decreases the resistance due to the thin conductive shield. It is shown that the resistance due to the thin conductive shield at lower frequencies is smaller than that in the “thick conductive shield” case.

  • Effect of Holder Heat Capacity on Bridge Shape at Low Speed Breaking Contact

    Kazuaki MIYANAGA  Yoshiki KAYANO  Tasuku TAKAGI  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E93-C No:9
      Page(s):
    1456-1459

    In order to clarify the physics of contact life time, the relationship between heat capacity of holder and shape of bridge (length and diameter) is discussed in this paper. The AgPd60 alloy is chosen as electrode material. Two holders with different heat capacity are comprised of copper plate and cylinder. The shape of the bridge at the low speed breaking contact is observed by using the high speed digital camera. It was demonstrated that the shape of the bridge is changed by the response and distribution of the temperature.

  • Novel Multi-Objective Design Approach for Cantilever of Relay Contact Using Preference Set-Based Design Method

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Pubricized:
    2020/07/03
      Vol:
    E103-C No:12
      Page(s):
    713-717

    In the design of electrical contacts, it is required to pursue a solution which satisfies simultaneously multi-objective (electrical, mechanical, and thermal) performances including conflicting requirements. Preference Set-Based Design (PSD) has been proposed as practical procedure of the fuzzy set-based design method. This brief paper newly attempts to propose a concurrent design method by PSD to electrical contact, specifically a design of a shape of cantilever in relay contacts. In order to reduce the calculation (and/or experimental) cost, this paper newly attempt to apply Design of Experiments (DoE) for meta-modeling to PSD. The number of the calculation for the meta-modeling can be reduced to $ rac{1}{729}$ by using DoE. The design parameters (width and length) of a cantilever for drive an electrical contact, which satisfy required performance (target deflection), are obtained in ranges successfully by PSD. The validity of the design parameters is demonstrated by numerical modeling.

  • The Relationship between Voltage and Duration of Short-Time Arc Generated by Slowly Breaking Silver Contact

    Yoshiki KAYANO  Hikaru MIURA  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    LETTER-Arc Discharge & Related Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1230-1232

    Arc discharge generated by breaking electrical contact is considered as a main source of an undesired electromagnetic (EM) noise. To clarify mechanism of generation of the EM noise, feature extraction of bridge and short-time arc waveforms generated by slowly breaking Ag contact was discussed experimentally. The short-duration time arc before the ignition of the continuous metallic arc discharge was observed. The highest probability density voltage is defined as short-arc sustainable voltage (SASV). The relationship between SASV and duration of short-time arc was quantified experimentally. It is revealed that as the arc voltage of the short-time arc is higher, its duration becomes longer.

  • PCB Structure with a Guard Band for Suppressing Electromagnetic Radiation

    Yoshiki KAYANO  Motoshi TANAKA  Hiroshi INOUE  

     
    PAPER-Printed Circuit Boards

      Vol:
    E88-B No:8
      Page(s):
    3182-3188

    Electromagnetic (EM) radiation from a feed cable attached to a printed circuit board (PCB), which is commonly encountered electromagnetic interference (EMI) problem at high-speed electronic PCB designs, is investigated by experimental and finite-difference time-domain (FDTD) modeling. In this paper, we propose and demonstrate a guard-band structure as a method for suppressing the EM radiation from a PCB with a feed cable. A signal trace is located between two ground traces (guard-band: GB). Four different cross-sectional PCB structures, which are commonly used in microwave integrated circuits as typical structures, are used to compare the guard-band structure. Frequency response of common-mode (CM) current, electric field near a PCB, and far electric field (radiated emission) are investigated as characteristics of the EMI. Results show that the shield structure is effective in suppressing the CM current at lower frequency. However, structures in which a conductive plate exists near the signal trace yield resonances with high level peak on CM current, near and far-field. On the other hand, the guard-band structure is more effective than other structures in suppressing the EM radiation in the considered frequency range. Therefore the guard-band will be effective for high-density PCB packaging with high-speed traces.

  • FOREWORD Open Access

    Yoshiki KAYANO  

     
    FOREWORD

      Vol:
    E105-C No:12
      Page(s):
    720-720
1-20hit(29hit)