The search functionality is under construction.

Keyword Search Result

[Keyword] diffraction coefficient(3hit)

1-3hit
  • Uniform Physical Optics Diffraction Coefficients for Impedance Surfaces and Apertures

    Masayuki OODO  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E80-C No:7
      Page(s):
    1056-1062

    The key concept of Physical Optics (PO), originally developed for a perfectly electric conductor (PEC), consists in that the high frequency fields on the scatterer surface are approximated by those which would exist on the infinite flat surface tangent to the scatterer. The scattered fields at arbitrary observation points are then calculated by integrating these fields on the scatterer. This general concept can be extended to arbitrary impedance surfaces. The asymptotic evaluation of this surface integration in terms of diffraction coefficients gives us the fields in analytical forms. In this paper, uniform PO diffraction coefficients for the impedance surfaces are presented and their high accuracy is verified numerically. These coefficients are providing us with the tool for the mechanism extraction of various high frequency methods such as aperture field integration method and Kirchhoff's method.

  • PO Diffraction Coefficients for the Surface of Strips on a Grounded Dielectric Slab

    Shuguang CHEN  Masayuki OODO  Makoto ANDO  Naohisa GOTO  

     
    PAPER

      Vol:
    E78-C No:10
      Page(s):
    1433-1439

    In practical applications of the artificial boundary surfaces, such as corrugation and strips on a grounded dielectric slab, the surfaces have finite sizes. The diffraction fields from anisotropic surface of this kind can not be calculated using conventional diffraction coefficients. In this paper, uniform diffraction coefficients for the strips on a grounded dielectric slab are given in the sense of physical optics, as functions of incident angle, polarization and structural parameters of the surface. Firstly, the incident plane wave is decomposed into the two special polarization directions. Then uniform diffraction coefficients originally derived for isotropic surfaces with arbitrary impedance can be applied for each polarization component. Finally, expressions for the diffraction coefficients from the anisotropic surface are given as the sum of those for two polarization components. The validity of the diffraction coefficients is verified theoretically and experimentally.

  • Errors of Physical Optics in Shadow Region--Fictitious Penetrating Rays--

    Masayuki OODO  Tsutomu MURASAKI  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E77-C No:6
      Page(s):
    995-1004

    Physical optics (PO) is an approximation method for high-frequency scattering and diffraction problems. But PO fields are inaccurate in the shadow region where the source is screened by the scatterer. It has been difficult to extract the mechanism of this error because PO includes numerical integration. In 2-D problems, PO fields are analytically and accurately expressed in terms of PO equivalent edge currents (PO-EECs) which represent the leading contributions of PO original integration. Comparison of PO in this form and geometrical theory of diffraction (GTD) which gives accurate fields in the shadow region, clarifies the cause of PO errors. For a scatterer with a corner, PO errors are mainly due to the rays emanating from the invisible edges. For a curved surface scatterer, the contributions penetrating the scatterer are small and main PO errors generally consist in PO-EECs itself.