The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] digital signal recording(2hit)

1-2hit
  • Runlength Control Based on Guided Scrambling for Digital Magnetic Recording

    Akiomi KUNISA  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2209-2217

    Guided Scrambling (GS) is used for control of the runlength within code blocks, such as d or k, as well as for DC component suppression. A code designed by the GS technique, called a weakly constrained code, does not strictly guarantee the imposed k-constraint, but rather generates code blocks that violate the prescribed constraint with very low probability. In this case, the code rate and efficiency become very high, compared with typical RLL codes using a small constrained length. In this paper, weakly constrained codes based on the convolutional GS and GF-addition GS generate the weakly k-constraint sequences. The probability that a code block violates the k-constraint is measured. To show the superior performance of the GS, the occurrence probability of each runlength is also investigated and compared with the 24/25(0, 8) block code which has a high code rate and adheres to channel constraints. We also compare it with the runlength distribution of a maxentropic RLL sequence and show that the statistical property of the GS-encoded sequences is similar to that of the maxentropic RLL sequence on runlength distribution.

  • On Symbol Error Probability of DC Component Suppressing Systems

    Akiomi KUNISA  Nobuo ITOH  

     
    LETTER-Coding Theory

      Vol:
    E81-A No:10
      Page(s):
    2174-2179

    The DC component suppressing method, called Guided Scrambling (GS), has been proposed, where a source bit stream within a data block is subjected to several kinds of scrambling and a RLL (Run Length Limited) coding to make the selection set of channel bit streams, then the one having the least DC component is selected. Typically, this technique uses a convolutional operation or GF (Galois field) conversion. A review of their respective symbol error properties has revealed important findings. In the former case, the RS (Reed-Solomon) decoding capability is reduced because error propagation occurs in descrambling. In the latter case, error propagation of a data block length occurs when erroneous conversion data occurs after RS decoding. This paper introduces expressions for determining the decoded symbol error probabilities of the two schemes based on these properties. The paper also discusses the difference in code rates between the two schemes on the basis of the result of calculation using such expressions.