The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] direct-conversion receiver(5hit)

1-5hit
  • Joint Estimation of Carrier Frequency Offset and I/Q Imbalance in the Presence of Time-Varying DC Offset

    Umut YUNUS  Hai LIN  Katsumi YAMASHITA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:1
      Page(s):
    16-21

    Due to the importance of maintaining the orthogonality among subcarriers, the estimation of carrier frequency offset (CFO) is a crucial issue in orthogonal frequency division multiplexing (OFDM) systems. The CFO estimation becomes complicated in OFDM direct-conversion receivers (DCRs), where additional analog impairments such as I/Q imbalance and time-varying DC offset (TV-DCO) exist. In this paper, we propose a novel joint estimation method for CFO and I/Q imbalance in the presence of TV-DCO. By using the linear property of the TV-DCO and employing a periodic pilot sequence, the desired estimates can be obtained in closed-form. Simulation results confirm the validity of the proposed method.

  • Robust Frequency Offset Estimation in the Presence of Time-Varying DC Offset

    Umut YUNUS  Hai LIN  Katsumi YAMASHITA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E92-B No:8
      Page(s):
    2577-2583

    In OFDM systems, the estimation/correction of carrier frequency offset (CFO) is crucial to maintain orthogonality among subcarriers. However, the CFO estimation suffers from DC offset (DCO) generated in low-cost direct-conversion receivers (DCRs). More seriously, in practice, DCO is time-varying due to the automatic gain control. In this paper, a novel CFO estimator in the presence of time-varying DCO is proposed. It is shown the residual DCO after high-pass filtering varies in a linear fashion. Based on this observation and the periodicity of the training sequence, we derive a CFO estimator independent of DCO. Also, the residual DCO can be estimated, using the obtained CFO. The validity of the proposed estimation method is demonstrated by simulations.

  • Preamble-Assisted Estimation for Frequency-Dependent I/Q Mismatch in Direct-Conversion OFDM Receivers

    Ming-Fu SUN  Terng-Yin HSU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2426-2432

    In direct-conversion orthogonal frequency division multiplexing (OFDM) receivers, the impact of frequency-dependent I/Q mismatch (IQ-M) with carrier frequency offset (CFO) must be considered. A preamble-assisted estimation is developed to circumvent the frequency-dependent IQ-M with CFO. The results of a simulation and an experiment show that the proposed method could provide good estimation efficiency and enhance the system performance. Moreover, the proposed scheme is compatible with current wireless local area network standards.

  • I/Q Imbalance Compensation Using Null-Carriers in OFDM Direct-Conversion Receiver

    Junghwa BAE  Jinwoo PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2257-2260

    This letter proposes a compensation method that can alleviate the problem of I/Q mismatch generated in the direct-conversion receiver of OFDM systems. In the proposed method, the amount of I/Q mismatch is estimated using null-carriers in transmitted signals, and it is subtracted from received symbols to suppress I/Q mismatch effects. Simulations show experiments that the proposed method can effectively eliminate the I/Q mismatch effects.

  • An Incoherent Direct-Conversion Receiver with a Full Digital Logic FSK Demodulator

    Sang Yun LEE  Chan Geun YOON  Choong Woong LEE  

     
    LETTER-Communication Systems and Transmission Equipment

      Vol:
    E79-B No:7
      Page(s):
    978-981

    A direct-conversion receiver with a full digital logic FSK demodulator is presented. It is developed from the quadricorrelator which is known as a frequency detector. We show that the performance of the receiver converges to that of the analog quadricorrelator receiver as the number of mixing axes increases, and obtain the optimum filter bandwidth by computer simulation.