1-5hit |
Mitsuyoshi KISHIHARA Hiroaki IKEUCHI Yuichi UTSUMI Tadashi KAWAI Isao OHTA
The metallic waveguide is one of many effective media for millimeter- and submillimeter-waves because of the advantage of its low-loss nature. This paper describes the fabrication method of PTFE-filled waveguide components with the use of the SR (synchrotron radiation) direct etching process of PTFE, sputter deposition of metal, and electroplating. PTFE is known as a difficult material to process with high precision. However, it has been reported that PTFE microstructures can be fabricated by the direct exposure to SR. First, an iris-coupled waveguide BPF with 5-stage Chebyshev response is designed and fabricated for the Q-band. It is demonstrated that the present process is applicable for the fabrication of the practical components inclusive of narrow patterns. Then, a cruciform 3 dB coupler with air-filled posts is designed and fabricated for the Q-band. Directivity and matched state of the coupler can be realized by “holes” in the dielectric material. The measurement results are also shown.
Takao FUJII Isao OHTA Tadashi KAWAI Yoshihiro KOKUBO
This paper presents a new quarter-wavelength microstrip coupler compensated with a periodic sequence of floating metallic strips in the slots on the inner edges. After describing the characteristics of the coupled-line, as an example, a 15-dB coupler is designed and a high directivity of 30 dB or more in theory is obtained over a full band of a single-section coupler. Next, couplers with various coupling factors are designed, and the usefulness for very loose coupling is demonstrated. Furthermore, a three-section coupler is designed to show the effectiveness in a wide frequency range. The validity of the design concept and procedure is confirmed by electromagnetic simulations and experiments.
Takao FUJII Isao OHTA Tadashi KAWAI Yoshihiro KOKUBO
This paper presents some structures of artificial coplanar waveguide with very slow phase velocity and their applications to a design of compact 3-dB branch-line couplers. The slow-wave structure is constructed by periodically loading both of series inductance and shunt capacitance. First, a basic miniature branch-line coupler is designed and consequently considerable size-reduction of about 1/4 is obtained. Next, a broadband design technique is described using open-circuited quarter-wavelength series-stubs added at each port as a matching network. By size-reducing the series-stubs and branchline sections, a very compact broadband coupler with a good hybrid performance over a wide bandwidth of 31 percent or more is realized. The design concepts and procedures are verified both numerically and experimentally.
Mitsuyoshi KISHIHARA Isao OHTA Kuniyoshi YAMANE
This paper proposes a new type of compact waveguide directional coupler, which is constructed from two crossed E-plane rectangular waveguide with two metallic posts in the square junction and one metallic post at each port. The metallic posts in the square junction are set symmetrically along a diagonal line to obtain the directivity properties. The metallic post inserted at each input/output waveguide port can realize a matched state. Tight-coupling properties 0.79-6 dB are realized by optimizing the dimension of the junction and the positions/radii of the posts. The design results are verified by an em-simulator (Ansoft HFSS) and experiments.
The field supported by multilayered periodic waveguides is well characterized by only one or two discrete leaky waves, rather than by a more complicated field representation that includes continuous spectra. The rigorous leaky-modes coupled in multilayered geometry can be then treated by relatively simpler and analytic model that describes the operation of practical optoelectronic devices in terms of leakage effects. To complement our modeling, we discuss and emphasize novel mathematical formulations based on the field orthogonality conditions of TE and TM modes coupled in multilayered periodic structures. In addition, to show the validity of our approach we numerically evaluate new physical meanings to illustrate quantitatively and rigorously the coupling efficiency of grating-assisted directional couplers (GADCs). The results reveal that the systematic and effective technique yields phenomenologically useful interpretations.