1-3hit |
Owing to the large amount of speckle noise and ill-defined edges present in echocardiographic images, computer-based boundary detection of the left ventricle has proved to be a challenging problem. In this paper, a Markovian level set method for boundary detection in long-axis echocardiographic images is proposed. It combines Markov random field (MRF) model, which makes use of local statistics with level set method that handles topological changes, to detect a continuous and smooth boundary. Experimental results show that higher accuracy can be achieved with the proposed method compared with two related MRF-based methods.
In this paper, the discrimination of ultrasonic heart (echocardiographic) images is studied by making use of some texture features, including the angular second moment, contrast, correlation and entropy which are obtained from a gray-level cooccurrence matrix. Features of these types are used as inputs to the input layer of a neural network (NN) to classify two sets of echocardiographic images-normal heart and dilated cardiomyopathy (DCM) (18 and 13 samples, respectively). The performance of the NN classifier is also compared to that of a minimum distance (MD) classifier. Implementation of our algorithm is performed on a PC-486 personal computer. Our results show that the NN produces about 94% (the confidence level setting is 0.9) and the MD produces about 84% correct classification. We notice that the NN correctly classifies all the DCM cases, namely, all the misclassified cases are of false positive. These results indicate that the method of feature-based image analysis using the NN has potential utility for computer-aided diagnosis of the DCM and other heart diseases.
In this letter the classification of echocardiographic images is studied by making use of some texture features, including the angular second moment, the contrast, the correlation, and the entropy which are obtained from a gray-level cooccurrence matrix. Features of these types are used to classify two sets of echocardiographic images-normal and abnormal (cardiomyopathy) hearts. A minimum distance classifier and evaluation indexes are employed to evaluate the performance of these features. Implementation of our algorithm is performed on a PC-386 personal computer and produces about 87% correct classification for the two sets of echocardiographic images. Our preliminary results suggest that this method of feature-based image analysis has potential use for computer-aided diagnosis of heart diseases.