1-5hit |
Chisato FUKAI Kazuhide NAKAJIMA Takashi MATSUI
We describe the applicability of photonic crystal fiber (PCF) with an enlarged effective area Aeff to a distributed Raman amplification (DRA) transmission. We investigate the DRA transmission performance numerically over a large Aeff PCF taking account of the signal-to-noise ratio (SNR) improvement RSNR in the S, C, and L bands. We show that an RSNR of 3 dB can be expected by utilizing DRA with a maximum pump power of 500 mW when the Aeff of the PCF is 230 µm2.
Hai-Han LU Wen-Jeng HO Wen-I LIN Hsiang-Chun PENG Po-Chou LAI Hoshin YEE
A radio-on-dense-wavelength-division-multiplexing (DWDM) transport system based on injection-locked Fabry-Perot laser diodes (FP LDs) with four microwave carriers and large effective area fiber (LEAF) transmission was proposed and demonstrated. Good performance of bit error rate (BER) and intermodulation distortion to carrier ratio (IMD/C) over a-50 km of LEAF was obtained. Signal quality meets the demands of personal handy system (PHS)/vehicle information and communication system (VICS)/electronic toll collection (ETC)/satellite broadcasting (SB).
Nguyen Hoang HAI Yoshinori NAMIHIRA Feroza BEGUM Shubi F. KAIJAGE Tatsuya KINJO S.M. Abdur RAZZAK Nianyu ZOU
In this paper, we propose and demonstrate a novel type of PCF that has two cladding layers with Ge rods at the center core. We numerically show that it is possible to design a single mode PCF with large effective area greater than 200 µm2 over the whole wavelength above 1.2 µm. The proposed large mode area PCF (LMA-PCF) exhibits a high negative dispersion coefficient from -186 to -158 [ps/(nm-km)] in all wavelengths ranging from 1.2 µm to 1.8 µm. Effective single mode operation of LMA-PCF is confimed for the entire band of interest.
S. M. Abdur RAZZAK Yoshinori NAMIHIRA Feroza BEGUM Shubi KAIJAGE Nguyen Hoang HAI Nianyu ZOU
This paper describes near-zero ultra-flattened chromatic dispersion and low confinement loss that can be achieved from a decagonal photonic crystal fiber (D-PCF). The finite difference method with anisotropic perfectly matched boundary layer (PML) is used for the numerical analysis. It is demonstrated that it is possible to design a four-ring D-PCF with ultra-flattened dispersion of 0 0.69 ps/(nm-km) in a 1.30 to 1.75 µm wavelength range and 0 0.22 ps/(nm-km) in a 1.35 to 1.65 µm wavelength range with very low confinement losses of order 0.0011 dB/km. The proposed D-PCF shows promising dispersion tolerance.
Kenta KANESHIMA Yoshinori NAMIHIRA Nianyu ZOU Hiroki HIGA Yasunori NAGATA
In this paper, the confinement loss of octagonal photonic crystal fibers (PCFs) with an isosceles triangle lattice of air-holes are numerically investigated. Taking into account the confinement loss, the mode field diameter (MFD), the effective area (Aeff) and the chromatic dispersion of octagonal PCFs are calculated, compared to conventional hexagonal PCFs. It is found from confinement loss and MFD results that the octagonal PCFs can confine the field strongly than the hexagonal PCFs due to the different air filling fraction. Moreover, it is shown that the octagonal PCFs are obtained not only positive but also negative larger dispersion values and smaller Aeff values compared to the hexagonal PCFs.