The search functionality is under construction.

Keyword Search Result

[Keyword] epipolar plane image(3hit)

1-3hit
  • Good Group Sparsity Prior for Light Field Interpolation Open Access

    Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER-Image

      Vol:
    E103-A No:1
      Page(s):
    346-355

    A light field, which is equivalent to a dense set of multi-view images, has various applications such as depth estimation and 3D display. One of the essential problems in light field applications is light field interpolation, i.e., view interpolation. The interpolation accuracy is enhanced by exploiting an inherent property of a light field. One example is that an epipolar plane image (EPI), which is a 2D subset of the 4D light field, consists of many lines, and these lines have almost the same slope in a local region. This structure induces a sparse representation in the frequency domain, where most of the energy resides on a line passing through the origin. On the basis of this observation, we propose a group sparsity prior suitable for light fields to exploit their line structure fully for interpolation. Specifically, we designed the directional groups in the discrete Fourier transform (DFT) domain so that the groups can represent the concentration of the energy, and we thereby formulated an LF interpolation problem as an overlapping group lasso. We also introduce several techniques to improve the interpolation accuracy such as applying a window function, determining group weights, expanding processing blocks, and merging blocks. Our experimental results show that the proposed method can achieve better or comparable quality as compared to state-of-the-art LF interpolation methods such as convolutional neural network (CNN)-based methods.

  • Fast and Robust Disparity Estimation from Noisy Light Fields Using 1-D Slanted Filters

    Gou HOUBEN  Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Pubricized:
    2019/07/03
      Vol:
    E102-D No:11
      Page(s):
    2101-2109

    Depth (disparity) estimation from a light field (a set of dense multi-view images) is currently attracting much research interest. This paper focuses on how to handle a noisy light field for disparity estimation, because if left as it is, the noise deteriorates the accuracy of estimated disparity maps. Several researchers have worked on this problem, e.g., by introducing disparity cues that are robust to noise. However, it is not easy to break the trade-off between the accuracy and computational speed. To tackle this trade-off, we have integrated a fast denoising scheme in a fast disparity estimation framework that works in the epipolar plane image (EPI) domain. Specifically, we found that a simple 1-D slanted filter is very effective for reducing noise while preserving the underlying structure in an EPI. Moreover, this simple filtering does not require elaborate parameter configurations in accordance with the target noise level. Experimental results including real-world inputs show that our method can achieve good accuracy with much less computational time compared to some state-of-the-art methods.

  • Sheared EPI Analysis for Disparity Estimation from Light Fields

    Takahiro SUZUKI  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    1984-1993

    Structure tensor analysis on epipolar plane images (EPIs) is a successful approach to estimate disparity from a light field, i.e. a dense set of multi-view images. However, the disparity range allowable for the light field is limited because the estimation becomes less accurate as the range of disparities become larger. To overcome this limitation, we developed a new method called sheared EPI analysis, where EPIs are sheared before the structure tensor analysis. The results of analysis obtained with different shear values are integrated into a final disparity map through a smoothing process, which is the key idea of our method. In this paper, we closely investigate the performance of sheared EPI analysis and demonstrate the effectiveness of the smoothing process by extensively evaluating the proposed method with 15 datasets that have large disparity ranges.