The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] error-correction(9hit)

1-9hit
  • Some Improved Constructions for Nonbinary Quantum BCH Codes

    Nianqi TANG  Zhuo LI  Lijuan XING  Ming ZHANG  Feifei ZHAO  

     
    LETTER-Information Theory

      Vol:
    E102-A No:1
      Page(s):
    303-306

    Maximal designed distances for nonbinary narrow-sense quantum Bose-Chaudhuri-Hocquenghem (BCH) codes of length $n= rac{q^4-1}{r}$ and new constructions for them are given, where q is an odd prime power. These constructions are capable of designing quantum BCH codes with new parameters. Furthermore, some codes obtained here have better parameters than those constructed by other known constructions.

  • Energy-Scalable 4KB LDPC Decoding Architecture for NAND-Flash-Based Storage Systems

    Youngjoo LEE  Jaehwan JUNG  In-Cheol PARK  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:2
      Page(s):
    293-301

    This paper presents a novel low-power decoder architecture for the (36420, 32778) binary LDPC code targeting energy-efficient NAND-flash-based mobile devices. The proposed energy-scalable decoding algorithm reduces the operating bit-width of decoding function units at the early-use stage where the channel condition is good enough to lower the precision of computation. Based on a flexible adder structure, the decoding energy of the proposed LDPC decoder can be reduced by freezing the unnecessary parts of hardware resources. A prototype 4KB LDPC decoder is designed in a 65nm CMOS technology, which achieves an average decoding throughput of 8.13Gb/s with 1.2M equivalent gates. The power consumption of the decoder ranges from 397mW to 563mW depending on operating conditions.

  • Extended Single Parity Check Product Codes that Achieve Close-to-Capacity Performance in High Coding Rate

    Akira SHIOZAKI  Masashi KISHIMOTO  Genmon MARUOKA  

     
    LETTER-Coding Theory

      Vol:
    E93-A No:9
      Page(s):
    1693-1696

    This letter proposes extended single parity check product codes and presents their empirical performances on a Gaussian channel by belief propagation (BP) decoding algorithm. The simulation results show that the codes can achieve close-to-capacity performance in high coding rate. The code of length 9603 and of rate 0.96 is only 0.77 dB away from the Shannon limit for a BER of 10-5.

  • A Roman-Chinese Character Conversion System Correcting Pinyin Spell Errors with Application to the Chinese FEP

    Bin YE  Hirotada KAWAKAMI  Tadahiro MATSUMOTO  Munehiro GOTO  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E83-D No:5
      Page(s):
    1153-1159

    It is not so easy even for the ordinary Chinese to spell the correct Pinyin. Therefore the Pinyin-based Chinese character (Kanji) input system including the Chinese word processor is not easy to use. This paper propose a FEP (Front End Processor) to the Pinyin-based input system which allows the user's slight mistakes due to his ignorance of the spelling or dialect. This FEP uses the similarity of the structure of Kanji to confirm the correct Pinyin.

  • Decoded Error Characteristics of Two-Pass APP Decoding

    Akira SHIOZAKI  Yukinori KANAYA  

     
    LETTER-Coding Theory

      Vol:
    E79-A No:9
      Page(s):
    1450-1452

    The performance of APP (a posteriori probability) decoding algorithm which is well known as a soft decision decoding algorithm for majority logic decodable codes is further improved by iterating the algorithm one or more times. This letter shows that there exists the optimal non-zero threshold value of the decision function that minimizes the decoded error rate in two-pass APP decoding though the optimal threshold value in one-pass APP decoding is zero.

  • Recognition of Degraded Machine-Printed Characters Using a Complementary Similarity Measure and Error-Correction Learning

    Minako SAWAKI  Norihiro HAGITA  

     
    PAPER-Classification Methods

      Vol:
    E79-D No:5
      Page(s):
    491-497

    Most conventional methods used in character recognition extract geometrical features, such as stroke direction and connectivity, and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs and stains, and by the graphical designs such as used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is perfectly accurate. This paper proposes a method for recognizing degraded characters as well as characters printed on graphical designs. This method extracts features from binary images, and a new similarity measure, the complementary similarity measure, is used as a discriminant function; it compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2, which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, and special characters. The results show that our method is much more robust against noise than the conventional geometrical-feature method. It also achieves high recognition rates of over 97% for characters with textured foregrounds, over 99% for characters with textured backgrounds, over 98% for outline fonts and over 99% for reverse contrast characters. The experiments for recognizing both the fontstyles and character category show that it also achieves high recognition rates against noise.

  • Asymptotic Bounds for Unidirectional Byte Error-Correcting Codes

    Yuichi SAITOH  Hideki IMAI  

     
    PAPER

      Vol:
    E76-A No:9
      Page(s):
    1437-1441

    Asymptotic bounds are considered for unidirectional byte error-correcting codes. Upper bounds are developed from the concepts of the Singleton, Plotkin, and Hamming bounds. Lower bounds are also derived from a combination of the generalized concatenated code construction and the Varshamov-Gilbert bound. As the result, we find that there exist codes of low rate better than those on the basis of Hamming distance with respect to unidirectional byte error-correction.

  • Construction Techniques for Error-Control Runlength-Limited Block Codes

    Yuichi SAITOH  Takahiro OHNO  Hideki IMAI  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:3
      Page(s):
    453-458

    A technique is presented for constructing (d,k) block codes capable of detecting single bit errors and single peak-shift errors in consecutive two runs. This constrains the runlengths in the code sequences to odd numbers. The capacities and the cardinalities for finite code length of these codes are described. A technique is also proposed for constructing (d,k) block codes capable of correcting single peak-shift errors.

  • Runlength-Limited Short-Length Codes for Unidirectional-Byte-Error-Control

    Yuichi SAITOH  Hideki IMAI  

     
    PAPER

      Vol:
    E75-A No:9
      Page(s):
    1057-1062

    Runlength-limited block codes are investigated. These codes are useful for storing data in storage devices. Since most devices are not noiselss, the codes are often required to have some error-control capability. We consider runlength-limited codes that can correct or detect unidirectional byte errors. Some constructions of such codes are presented.