The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fairness index(2hit)

1-2hit
  • An Adaptive Fairness and Throughput Control Approach for Resource Scheduling in Multiuser Wireless Networks

    Lin SHAN  Sonia AISSA  Hidekazu MURATA  Susumu YOSHIDA  Liang ZHAO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    561-568

    The important issue of an adaptive scheduling scheme is to maximize throughput while providing fair services to all users, especially under strict quality of service requirements. To achieve this goal, we consider the problem of multiuser scheduling under a given fairness constraint. A novel Adaptive Fairness and Throughput Control (AFTC) approach is proposed to maximize the network throughput while attaining a given min-max fairness index. Simulation results reveal that comparing to straightforward methods, the proposed AFTC approach can achieve the desired fairness while maximizing the throughput with short convergence time, and is stable in dynamic scenarios. The trade-off between fairness and throughput can be accurately controlled by adjusting the scheduler's parameters.

  • A Transport-Layer Solution for Alleviating TCP Unfairness in a Wireless LAN Environment

    Masafumi HASHIMOTO  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:3
      Page(s):
    765-776

    Per-flow unfairness of TCP throughput in the IEEE 802.11 wireless LAN (WLAN) environment has been reported in past literature. A number of researchers have proposed various methods for alleviating the unfairness; most require modification of MAC protocols or queue management mechanisms in access points. However, the MAC protocols of access points are generally implemented at hardware level, so changing these protocols is costly. As the first contribution of this paper, we propose a transport-layer solution for alleviating unfairness among TCP flows, requiring a small modification to TCP congestion control mechanisms only on WLAN stations. In the past literature on fairness issues in the Internet flows, the performance of the proposed solutions for alleviating the unfairness has been evaluated separately from the network bandwidth utilization, meaning that they did not consider the trade-off relationships between fairness and bandwidth utilization. Therefore, as the second contribution of this paper, we introduce a novel performance metric for evaluating trade-off relationships between per-flow fairness and bandwidth utilization at the network bottleneck. We confirm the fundamental characteristics of the proposed method through simulation experiments and evaluate the performance of the proposed method through experiments in real WLAN environments. We show that the proposed method can achieve better a trade-off between fairness and bandwidth utilization, regardless of vendor implementations of wireless access points and wireless interface cards.