The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fast convergence(7hit)

1-7hit
  • Proposal of Novel Optical Burst Signal Receiver for ONU in Optical Switched Access Network

    Hiromi UEDA  Keita HAMASAKI  Takashi KURIYAMA  Toshinori TSUBOI  Hiroyuki KASAI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:3
      Page(s):
    819-831

    To realize economical optical burst signal receivers for the Optical Network Unit (ONU) of the Ethernet Optical Switched Access Network (E-OSAN), we previously implemented optical burst receivers with AC-coupling and DC-coupling using off-the-shelf components, and showed that the former offers better performance. This paper proposes a new optical burst signal receiver that uses the transfer function, Gn(s) = 1-Hn(s), where Hn(s) denotes a Bessel filter transfer function of order n. We also present a method for designing the proposed receiver and clarify that it has better performance than the conventional AC-coupling one. We then present an LCR circuit synthesis of Gn(s), which is necessary to actually implement a burst receiver based on the proposal.

  • Pilot-Assisted Channel Estimation Using Adaptive Interpolation for Coherent Rake Reception of DS-CDMA Signals

    Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    2962-2970

    In this paper, a pilot-assisted channel estimation using adaptive interpolation (in which, different interpolation filter tap weights is used for different symbol position) is proposed. Each set of tap weights is updated using the normalized least mean square (NLMS) algorithm, the reference signal for which is obtained by decision feedback and reverse modulation of the received data symbol. In order to reduce the number of tap weight sets and to achieve fast convergence, the conjugate centrosymmetry property of the tap weight set is used. The average bit error rate (BER) performance in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. Also evaluated is the robustness against the frequency offset between a transmitter and a receiver.

  • A Fast Converging RLS Equaliser

    Tetsuya SHIMAMURA  

     
    LETTER-Digital Signal Processing

      Vol:
    E84-A No:2
      Page(s):
    675-680

    It is well known that based on the structure of a transversal filter, the RLS equaliser provides the fastest convergence in stationary environments. This paper addresses an adaptive transversal equaliser which has the potential to provide more faster convergence than the RLS equaliser. A comparison is made with respect to computational complexity required for each update of equaliser coefficients, and computer simulations are demonstrated to show the superiority of the proposed equaliser.

  • Prefiltering for LMS Based Adaptive Receivers in DS/CDMA Communications

    Teruyuki MIYAJIMA  Kazuo YAMANAKA  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2357-2365

    In this paper, three issues concerning the linear adaptive receiver using the LMS algorithm for single-user demodulation in direct-sequence/code-division multiple-access (DS/CDMA) systems are considered. First, the convergence rate of the LMS algorithm in DS/CDMA environment is considered theoretically. Both upper and lower bounds of the eigenvalue spread of the autocorrelation matrix of receiver input signals are derived. It is cleared from the results that the convergence rate of the LMS algorithm becomes slow when the signal power of interferer is large. Second, fast converging technique using a prefilter is considered. The LMS based adaptive receiver using an adaptive prefilter adjusted by a Hebbian learning algorithm to decorrelate the input signals is proposed. Computer simulation results show that the proposed receiver provides faster convergence than the LMS based receiver. Third, the complexity reduction of the proposed receiver by prefiltering is considered. As for the reduced complexity receiver, it is shown that the performance degradation is little as compared with the full complexity receiver.

  • A Subband Adaptive Filtering Algorithm with Adaptive Intersubband Tap-Assignment

    Akihiko SUGIYAMA  Akihiro HIRANO  

     
    PAPER-Adaptive Digital Filters

      Vol:
    E77-A No:9
      Page(s):
    1432-1438

    This paper proposes a new subband adaptive filtering algorithm for adaptive FIR filters. The number of taps for each subband filter is adaptively controlled based on a sum of the absolute coefficients or the coefficient power in conjunction with the subband signal power. Keeping the total number of taps constant, redundant taps are redistributed to subbands where the number of taps is insufficient. Simulation results with a white signal show that the number of taps in each subband approaches an optimum as each subband filter converges. For a colored signal, tap assignment by the new algorithm is as stable as for a white signal.

  • A Fast Convergence Algorithm for Adaptive FIR Filters with Sparse Taps

    Akihiko SUGIYAMA  Shigeji IKEDA  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E77-A No:4
      Page(s):
    681-687

    This paper proposes a fast convergence algorithm for adaptive FIR filters with sparse taps. Coefficient values and positions are simultaneously controlled. The proposed algorithm consists of two stages: flat-delay estimation and tapposition control with a constraint. The flat-delay estimation is carried out by estimating the significant dispersive region of the impulse response. The constrained tap-position control is achieved by imposing a limit on the new-tap-position search. Simulation results show that the proposed algorithm reduces the convergence speed by up to 85% over the conventional algorithms for a white signal input. For a colored signal, it also converges in 40% of the convergence time by the conventional algorithms. The proposed algorithm is applicable to adaptive FIR filters which are to model a path with long flat delay, such as echo cancelers for satellite-link communications.

  • Stochastic Gradient Algorithms with a Gradient-Adaptive and Limited Step-Size

    Akihiko SUGIYAMA  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E77-A No:3
      Page(s):
    534-538

    This paper proposes new algorithms for adaptive FIR filters. The proposed algorithms provide both fast convergence and small final misadjustment with an adaptive step size even under an interference to the error. The basic algorithm pays special attention to the interference which contaminates the error. To enhance robustness to the interference, it imposes a special limit on the increment/decrement of the step-size. The limit itself is also varied according to the step-size. The basic algorithm is extended for application to nonstationary signals. Simulation results with white signals show that the final misadjustment is reduced by up to 22 dB under severe observation noise at a negligible expense of the convergence speed. An echo canceler simulation with a real speech signal exhibits its potential for a nonstationary signal.