The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fault analysis(23hit)

21-23hit(23hit)

  • Fault Analysis on (K+1)-Valued PLA Structure Logic Circuits

    Hui Min WANG  Chung Len LEE  Jwu E CHEN  

     
    PAPER-Fault Analysis, Testing and Verification

      Vol:
    E76-A No:6
      Page(s):
    1001-1010

    This paper presents a general form and a set of basic gates to implement (K+1)-valued PLA structure logic circuits. A complete fault analysis on the proposed circuit has been done and it is shown that all fanout stem faults can be collapsed to branch faults. A procedure for fault collapsing is derived. For any function implemented in the (K+1)-valued circuit, the number of remaining faults is smaller than that of the 2-valued circuit after the collapsing, where the value of K is dependent on the number of outputs and the assignment of the OR plane of the 2-valued logic circuit.

  • Analysis of Engine States and Automobile Features Based on Time-Dependent Spectral Characteristics

    Yumi TAKIZAWA  Shinichi SATO  Keisuke ODA  Atsushi FUKASAWA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1524-1532

    This paper describes a nonstationary spectral analysis method and its application to prognosis and diagnosis of automobiles. An instantaneous frequency spectrum is considered first at a single point of time based on the instantaneous representation of autocorrelation. The spectral distortion is then considered on two-dimensional spectrum, and the filtering is introduced into the instantaneous autocorrelations. By the above procedure, the Instantaneous Covariance method (ICOV), the Instantaneous Maximum Entropy Method (IMEM), and the Wigner method are shown and they are unified. The IMEM is used for the time-dependent spectral estimation of vibration and acoustic sound signals of automobiles. A multi-dimensional (M-D) space is composed based on the variables which are obtained by the IMEM. The M-D space is transformed into a simple two-dimensional (2-D) plane by a projection matrix chosen by the experiments. The proposed method is confirmed useful to analyze nonstationary signals, and it is expected to implement automatic supervising, prognosis and diagnosis for a traffic system.

  • Verification of Register Transfer Level (RTL) Designs

    Alberto Palacios PAWLOVSKY  Sachio NAITO  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    785-791

    This paper describes a new method for verifying designs at the RTL with respect to their specifications at the functional level. The base of the verification method shown here is the translation of the specification and design representations to graph models, where the descriptions common to both representations have a symbolic representation. These symbol labeled graphs are then simplified and, by solving the all node-pair path expression problem for them, a pair of regular expressions is obtained for every two nodes in the graphs. The first regular expression in each pair represents the flow of control and the second one the flow of data between the corresponding nodes. The process of verification is carried out by checking whether or not every pair of regular expressions of the specification has a corresponding pair in the design.

21-23hit(23hit)