1-4hit |
Tomokazu ODA Atsushi NAKAMURA Daisuke IIDA Hiroyuki OSHIDA
We propose a technique based on Brillouin optical time domain analysis for measuring loss and crosstalk in few-mode fibers (FMFs). The proposed technique extracts the loss and crosstalk of a specific mode in FMFs from the Brillouin gains and Brillouin gain coefficients measured under two different conditions in terms of the frequency difference between the pump and probe lights. The technique yields the maximum loss and crosstalk at a splice point by changing the electrical field injected into an FMF as the pump light. Experiments demonstrate that the proposed technique can measure the maximum loss and crosstalk of the LP11 mode at a splice point in a two-mode fiber.
The potential transmission capacity of a standard single-mode fiber peaks at around 100Tb/s owing to fiber nonlinearity and the bandwidth limitation of amplifiers. As the last frontier of multiplexing, space-division multiplexing (SDM) has been studied intensively in recent years. Although there is still time to deploy such a novel fiber communication infrastructure; basic research on SDM has been carried out. Therefore, a comprehensive review is worthwhile at this time toward further practical investigations.
Yuta WAKAYAMA Hidenori TAGA Takehiro TSURITANI
This paper presents an application of low-coherence interferometry for measurement of mode field diameters (MFDs) of a few-mode fiber and shows its performance compared with another method using a mode multiplexer. We found that the presented method could measure MFDs in a few-mode fiber even without any special mode multiplexers.
Toshio MORIOKA Yoshinari AWAJI Yuichi MATSUSHIMA Takeshi KAMIYA
Research efforts initiated by the EXAT Initiative are described to realize Exabit/s optical communications, utilizing the 3M technologies, i.e. multi-core fiber, multi-mode control and multi-level modulation.