The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fiber Bragg gratings(6hit)

1-6hit
  • Impact of GVD on the Performance of 2-D WH/TS OCDMA Systems Using Heterodyne Detection Receiver

    Ngoc T. DANG  Anh T. PHAM  Zixue CHENG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E92-A No:4
      Page(s):
    1182-1191

    In this paper, a novel model of Gaussian pulse propagation in optical fiber is proposed to comprehensively analyze the impact of Group Velocity Dispersion (GVD) on the performance of two-dimensional wavelength hopping/time spreading optical code division multiple access (2-D WH/TS OCDMA) systems. In addition, many noise and interferences, including multiple access interference (MAI), optical beating interference (OBI), and receiver's noise are included in the analysis. Besides, we propose to use the heterodyne detection receiver so that the receiver's sensitivity can be improved. Analytical results show that, under the impact of GVD, the number of supportable users is extremely decreased and the maximum transmission length (i.e. the length at which BER 10-9 can be maintained) is remarkably shortened in the case of normal single mode fiber (ITU-T G.652) is used. The main factor that limits the system performance is time skewing. In addition, we show how the impact of GVD is relieved by dispersion-shifted fiber (ITU-T G.653). For example, a system with 321 Gbit/s users can achieve a maximum transmission length of 111 km when transmitted optical power per bit is -5 dBm.

  • Implementation of an All-Fiber Variable Optical Delay Line with a Pair of Linearly Chirped Fiber Bragg Gratings

    EunSeo CHOI  Jihoon NA  Gopinath MUDHANA  Seon Young RYU  Byeong Ha LEE  

     
    PAPER-Optical Fibers, Cables and Fiber Devices

      Vol:
    E88-C No:5
      Page(s):
    925-932

    We implemented all-fiber delay line using linearly chirped fiber Bragg gratings (CFBG), which can be applicable for reflectometry or optical coherence tomography (OCT). Compared with the previously reported delay lines, the proposed fiber-based optical delay line has in principle novel advantages such as automatic dispersion cancellations without additional treatment and a gain in optical delay that is dependent on parameters of used CFBGs. Dispersion compensation in optical delay line (ODL), which is the indispensable problem in bulk optics based ODL, is demonstrated in fiber by using two identical but reversely ordered CFBGs. Amplified variable optical delay of around 2.5 mm can be obtained by applying small physical stretching of one of CFBGs in the proposed scheme. The operational principles of the all-fiber variable optical delay line, which are based on the distributed reflection characteristic of a CFBG employed, are described. Especially properties such as in-line automatic dispersion cancellation and amplified optical delay under strain are dealt. To demonstrate the properties of the proposed scheme, which is theoretical consequences under assumptions, an all-fiber optical delay line have been implemented using fiber optic components such as fiber couplers and fiber circulators. With the implanted ODL, the group delay and amplified optical delay length was measured with/without strain. The wavelength independent group delay measured within reflection bandwidth of the CFBG has proved the property of automatic dispersion cancellations in the proposed fiber delay line. Optical delay length of 2.5 mm was obtained when we apply small physical stretching to the CFBG by 100 µm and this is expressed by the amplification factor of 25. Amplification factor 25, which is less than theoretical value of 34 due to slipping of fiber in the fiber holder, shows that the proposed scheme can provide large optical delay with applying small physical stretching to the CFBG. We measure slide glass thickness to check the performance of the fiber delay line and the good agreement in measured and physical thickness of slide glass (1 mm thick) validates the potential of proposed delay line in the applications of optical reflectometry and OCT. We also discuss the problem and the solution to improve the performance.

  • Optical CDMA Spectral-Amplitude Codecs Capable of Reducing Multiple-Access and Optical Beat Interferences

    Jen-Fa HUANG  Yao-Tang CHANG  Song-Ming LIN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E87-B No:11
      Page(s):
    3195-3202

    Spectral-amplitude coding (SAC) techniques in fiber-Bragg-grating (FBG)-based optical code-division multiple-access (OCDMA) systems were investigated in our previous work. This paper adopts the same network architecture to investigate the simultaneous reductions of multiple-access interference (MAI) and optical beat interference (OBI). The MAI is caused by overlapping wavelengths from undesired network coder/decoders (codecs) while the OBI is induced by interaction of simultaneous chips at adjacent gratings. It is proposed that MAI and OBI reductions may be obtained by use of: 1) a source spectrum that is divided into equal chip spacing; 2) coded FBGs characterized by approximately the same number of "0" and "1" code elements; and 3) spectrally balanced photo-detectors. With quasi-orthogonal Walsh-Hadamard coded FBGs, complementary spectral chips is employed as signal pairs to be recombined and detected in balanced photo-detectors, thus achieving simultaneous suppression of both MAIs and OBIs. Simulation results showed that the proposed OCDMA spectral-amplitude coding scheme achieves significant MAI and OBI reductions.

  • 5-Bit Programmable Binary and Ternary Architectures for an Optical Transmit/Receive Beamformer

    Sabarni PALIT  Mark JAEGER  Sergio GRANIERI  Azad SIAHMAKOUN  Bruce BLACK  Jeffrey CHESTNUT  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1203-1208

    Binary and ternary 5-bit programmable dispersion matrix, based on fiber Bragg reflectors, is built to control a two-channel receive/transmit beamformer at 1550 nm. RF phase measurements for the 32/31 delay configurations are presented. The programmable dispersion matrix is fully demonstrated and characterized for RF signals from 0.2 to 1 GHz.

  • Phase Plate Process for Advanced Fiber Bragg Gratings Devices Manufacturing

    Christophe MARTINEZ  Paul JOUGLA  Sylvain MAGNE  Pierre FERDINAND  

     
    PAPER-Passive and Active Devices for Photonic Sensing

      Vol:
    E83-C No:3
      Page(s):
    435-439

    A new manufacturing process for advanced Fiber Bragg Gratings which uses phase plates is described. Its high versatility allows to achieve many type of filters in optical fibers (phase-shifted, apodised, Fabry-Perot).

  • Effects of Grating Period and Mode Order on the Growth and Sensitivity of the Resonant Peaks of Long Period Gratings

    Saeed PILEVAR  Trevor W. MACDOUGALL  Christopher C. DAVIS  

     
    PAPER-Passive and Active Devices for Photonic Sensing

      Vol:
    E83-C No:3
      Page(s):
    448-453

    A general analytical expression for describing the growth of the resonant peak wavelengths of long period gratings is derived. The theoretical calculations explain the shift of peak loss wavelengths in the direction of either shorter or longer wavelengths as the induced index change of grating increases. We have calculated and experimentally verified the sensitivity of the resonant peak wavelengths with respect to an overlay index for various grating periods. It is shown that the center wavelength shift of the claddding modes depends strongly on the grating period and the claddding mode order.