The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fiber dispersion(6hit)

1-6hit
  • An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    Shoichiro SENO  Eiichi HORIUCHI  Sota YOSHIDA  Takashi SUGIHARA  Kiyoshi ONOHARA  Misato KAMEI  Yoshimasa BABA  Kazuo KUBO  Takashi MIZUOCHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:6
      Page(s):
    1997-2004

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24 km and 360 km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  • 10 Gb/s WDM Transmission at 1064 and 1550 nm over 24 km Photonic Crystal Fiber with Negative Power Penalties

    Kenji KUROKAWA  Kyozo TSUJIKAWA  Katsusuke TAJIMA  Kazuhide NAKAJIMA  Izumi SANKAWA  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E90-B No:10
      Page(s):
    2803-2808

    We achieved the first 10 Gb/s WDM transmission at 1064 and 1550 nm over 24 km of photonic crystal fiber (PCF). We confirmed an improvement in the bit error rate (BER) performance after the transmission, namely "negative power penalties" of -0.5 and -0.3 dB at 1064 and 1550 nm, respectively. Our experimental result and theoretical estimation revealed that the signal degradation induced by the chromatic dispersion can be effectively suppressed by employing the pre-chirp technique with a conventional Z-cut lithium niobate (LN) modulator. We also show theoretically that we can expect to realize 10 Gb/s transmission over a 24 km PCF with negligible BER degradation in the 1060 to 1600 nm wavelength range by using the pre-chirp technique.

  • Evaluation of Intensity Noise in Semiconductor Fabry-Perot Lasers

    Kenji SATO  

     
    PAPER-Components and Devices

      Vol:
    E87-C No:9
      Page(s):
    1510-1516

    Intensity-noise characteristics of stable multi-mode Fabry-Perot semiconductor lasers are analyzed experimentally and theoretically. Mode-partition noise caused by optical filtering and propagation through optical fibers is investigated by evaluating the relative intensity noise and signal-to-noise ratio. The experimental results indicate that the simplified two-mode analysis provides a good approximation. Suppression of the mode-partition noise by nonlinear gain is experimentally confirmed.

  • Full-Duplex Transmission Using 2-RF-Port Electroabsorption Transceiver with Photonic Up- and Downconversions for Millimeter-Wave Radio-on-Fiber System

    Kensuke IKEDA  Toshiaki KURI  Yoshiro TAKAHASHI  Ken-ichi KITAYAMA  

     
    PAPER-Photonic Links for Wireless Communications

      Vol:
    E86-C No:7
      Page(s):
    1138-1145

    Full-duplex transmission of 60.0 GHz and 59.6 GHz millimeter-wave (mm-wave) signals of 155.52-Mbit/s differential phase shift keying (DPSK) data, radio-on-fiber (ROF) signals over 25-km-long standard single-mode fibers (SMFs) is experimentally demonstrated for the first time using a single 2-RF-port electroabsorption transceiver (EAT). The simplification of base stations (BSs) is strongly required to realize cost-effective and high-reliability mm-wave wireless access. This single EAT detects a C-band ROF signal modulated by a mm-wave downlink signal and simultaneously modulates the L-band optical carrier by a mm-wave uplink signal. The BS mainly consists of the EAT, leading to a simple and low-cost BS. Optical pilot tones and optical bandpass filters are used for photonic downconversion and photonic upconversion, to convert frequencies between mm-wave signals and intermediate frequency (IF) signals in the optical domain. With the use of optical conversions, these signals have no significant fading problems. The simultaneous transmission of both up- and downlinks has been achieved with the BER of less than 10-9. Also the fading problems due to the fiber dispersion of photonic conversions are analyzed mathematically in this paper. The single-EAT BS will become a promising candidate for a ROF access system.

  • Dispersion Compensation for Ultrashort Light Pulse CDMA Communication Systems

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E85-B No:12
      Page(s):
    2776-2784

    We investigate dispersion compensation using dispersion-compensating fibers (DCFs) for ultrashort light pulse code division multiple access (CDMA) communication systems in a multi-user environment. We employ fiber link that consists of a standard single-mode fiber (SMF) connected with two different types of DCFs. Fiber dispersion can be effectively decreased by adjusting the length ratios of DCFs to SMF appropriately. Some criteria for dispersion compensation are proposed and their performances are compared. We theoretically derive a bit error rate (BER) of ultrashort light pulse CDMA systems including the effects of the dispersion and multiple access interference (MAI). Moreover, we reveal the mutual relations among BER performance, fiber dispersion, MAI, the number of chips, a bandwidth of a signal, and a transmission distance for the first time. As a result, we show that our compensation strategy improves system performance drastically.

  • Fiber Dispersion and Amplifier Output Power Design for Soliton Transmission Systems

    Kazuhiro SHIMOURA  Shigeyuki SEIKAI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    235-239

    If the fiber dispersion of soliton transmission line is optimized, the amplifiers output power becomes almost constant for different amplifier spacing and pulse width. Numerical simulations indicate the optimal dispersion can be determined, as the ratio of amplifier spacing to dispersion length is about 0. 8 for uniform dispersion line.