1-10hit |
Ryosuke OZAKI Tomohiro KAGAWA Tsuneki YAMASAKI
In this paper, we analyzed the pulse responses of dispersion medium with periodically conducting strips by using a fast inversion Laplace transform (FILT) method combined with point matching method (PMM) for both the TM and TE cases. Specifically, we investigated the influence of the width and number of the conducting strips on the pulse response and distribution of the electric field.
This report focuses on a design method for gradient index (GRIN) lens antennas with controllable aperture field distributions. First, we derive differential equations representing optical paths in a gradient index medium with two optical surfaces by using geometrical optics, and then we formulate a novel design method for GRIN lens antennas based on these equations. The Levenberg-Marquardt algorithm is applied as a nonlinear least squares method to satisfy two conditions-focusing and shaping the aperture field distribution-thus realizing a prescribed radiation pattern. The conditions can be fulfilled by optimizing only the index (or permittivity) distribution, whereas the shapes of the optical surfaces remain as free parameters that can be utilized for other purposes, such as reducing reflection losses that occur on the surfaces, as illustrated in this report. A plano-concave GRIN lens is designed as an example, applying the proposed method, to realize a sidelobe level of -30 dB pseudo Taylor distribution, and a maximum sidelobe level of -29.1 dB was observed, indicating it is sufficiently accurate for practical use. In addition, we discuss the convergence of this method considering the relationship between the number of the initial conditions and the differential order of the design equations, factoring in scale invariance of the design equations.
Takashi KASUGA Ayako ITO Hiroshi INOUE
As the basic study of the electromagnetic interference (EMI) problem at the circuit elements, the near magnetic field distributions above resistors for the termination of a transmission line are measured to reveal the profile of radiation. Five kinds of resistors and two types of resistance values are sampled. The results showed that the variation of the near magnetic field distribution above the transmission line is effected largely by the reactance of the resistor at the high frequency. These results are the basis for the design of the structure of the component.
Yukisato NOGAMI Toshifumi SATOH Hiroyuki TANGO
A two-dimensional (2-D) physical model of n-channel poly-Si LDD TFTs in comparison with that of SD TFTs is presented to analyze hot-carrier degradation. The model is based on 2-D device simulator's Gaussian doping profiles for the source and drain junctions fitted to the lateral and vertical impurity profiles in poly-Si obtained from a 2-D process simulator. We have shown that, in the current saturation bias (Vg
Nobuyasu TAKEMURA Hiroaki MIYASHITA Shigeru MAKINO
We propose a wave analysis method for probe-fed Radial Line Planar Antennas (RLPAs) which yields an approximate solution for the aperture field distribution and scattering by loaded probes. Damping of electric power in the radial line due to radiation by antenna elements is included. The method can accommodate the effect of all conductors, including the terminating wall, by introducing the concept of equivalent posts. We have found good correspondence between the measured and calculated values of the aperture field distribution. The proposed method is effective for general geometries of probe-fed RLPAs.
The spatial distribution of the electric field in the low to high frequency bands radiated from printed circuit board (PCB) should be estimated continuously from near to far field. The characteristic of the electric field distribution is analyzed by the FDTD-multiple analysis space (FDTD-MAS) method, which can analyze from near to far field continuously, and compared with measured results. Since the analyzed electric field distribution is good agreement with measured results, it is suggested that the continuous distribution for electric field from near to far field can be calculated by the FDTD-MAS method. The electric field at low frequency is larger than that at high frequency within 1 m.
Kazuki IWASHITA Ikuo AWAI Hiroshi KUBO Atsushi SANADA
Unloaded Q of a dielectric image resonator is discussed based on the electromagnetic field distribution. It is shown that a partial air gap and a dielectric sheet with low permittivity between the dielectric resonator and the shield case reduce both the dielectric loss and the conductor loss. Especially, reduction of the conductor loss is significant, since the magnetic field distribution moves from the conductor to the upper part of resonator. A half-cut image resonator with an air gap and dielectric spacer is simulated and measured. The unloaded Q of the dielectric resonator with low dielectric loss is improved by about two times from that of original image resonator.
Yoshiro MATSUO Tetsuya KAWANISHI Satoshi OIKAWA Kaoru HIGUMA Masayuki IZUTSU
We propose a simple and novel technique for mapping vector spatial fields using electro-optic (EO) sampling. Our technique utilizes a sandwich-like EO crystal in which a dielectric mirror is inserted into the EO crystal. Three-dimensional field measurements at several given heights above a two-dimensional RF resonant structure were successfully demonstrated. Field scanning at any height is possible if the sandwich-like EO crystal is appropriately constructed.
Yoshiro MATSUO Tetsuya KAWANISHI Satoshi OIKAWA Kaoru HIGUMA Masayuki IZUTSU
By using electro-optic sampling technique, the electric field distribution on a resonant electrode for optical modulation was measured with a resolution in the micrometer range, while the range of measurement area was a few millimeters. The electric field on the asymmetric resonant electrode is enhanced by series and parallel resonance at the electrode. The resonance frequency was shifted by the presence of the electro-optic crystal, which was placed on the electrode for use in the sampling technique. We also showed that the measured electric field distribution at the edges of the electrode was different from the results numerically obtained by an equivalent circuit model.
Tetsuo ANADA Takaharu HIRAOKA JUI-PANG Hsu
A detailed investigation of the electromagnetic field distributions inside waveguide circuits is useful for physical understanding, studies of electromagnetic coupling effects for EMC and EMI and for optimization of waveguide circuit designs. In this paper, we describe how to calculate and measure the two-dimensional electromagnetic field distributions inside waveguide-type planar circuits, making use of an analogy between H-plane waveguide- and trough-type surface-wave planar circuits. The measurement results are in good agreement with the results of the numerical analysis based on the normal mode expansion method.