The search functionality is under construction.

Keyword Search Result

[Keyword] fingerprint classification(3hit)

1-3hit
  • Weber Centralized Binary Fusion Descriptor for Fingerprint Liveness Detection

    Asera WAYNE ASERA  Masayoshi ARITSUGI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/04/17
      Vol:
    E102-D No:7
      Page(s):
    1422-1425

    In this research, we propose a novel method to determine fingerprint liveness to improve the discriminative behavior and classification accuracy of the combined features. This approach detects if a fingerprint is from a live or fake source. In this approach, fingerprint images are analyzed in the differential excitation (DE) component and the centralized binary pattern (CBP) component, which yield the DE image and CBP image, respectively. The images obtained are used to generate a two-dimensional histogram that is subsequently used as a feature vector. To decide if a fingerprint image is from a live or fake source, the feature vector is processed using support vector machine (SVM) classifiers. To evaluate the performance of the proposed method and compare it to existing approaches, we conducted experiments using the datasets from the 2011 and 2015 Liveness Detection Competition (LivDet), collected from four sensors. The results show that the proposed method gave comparable or even better results and further prove that methods derived from combination of features provide a better performance than existing methods.

  • Efficient Fingercode Classification

    Hong-Wei SUN  Kwok-Yan LAM  Dieter GOLLMANN  Siu-Leung CHUNG  Jian-Bin LI  Jia-Guang SUN  

     
    INVITED PAPER

      Vol:
    E91-D No:5
      Page(s):
    1252-1260

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e.g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  • Fast Fingerprint Classification Based on Direction Pattern

    Jinqing QI  Dongju LI  Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  

     
    PAPER-Image/Visual Signal Processing

      Vol:
    E87-A No:8
      Page(s):
    1887-1892

    A new and fast fingerprint classification method based on direction patterns is presented in this paper. This method is developed to be applicable to today's embedded fingerprint authentication system, in which small area sensors are widely used. Direction patterns are well treated in the direction map at block level, where each block consists of 88 pixels. It is demonstrated that the search of directions pattern in specific area, generally called as pattern area, is able to classify fingerprints clearly and quickly. With our algorithm, the classification accuracy of 89% is achieved over 4000 images in the NIST-4 database, slightly lower than the conventional approaches. However, the classification speed is improved tremendously up to about 10 times as fast as conventional singular point approaches.