The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] flatness measure(1hit)

1-1hit
  • Expose Spliced Photographic Basing on Boundary and Noise Features

    Jun HOU  Yan CHENG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/04/01
      Vol:
    E98-D No:7
      Page(s):
    1426-1429

    The paper proposes an algorithm to expose spliced photographs. Firstly, a graph-based segmentation, which defines a predictor to measure boundary evidence between two neighbor regions, is used to make greedy decision. Then the algorithm gets prediction error image using non-negative linear least-square prediction. For each pair of segmented neighbor regions, the proposed algorithm gathers their statistic features and calculates features of gray level co-occurrence matrix. K-means clustering is applied to create a dictionary, and the vector quantization histogram is taken as the result vector with fixed length. For a tampered image, its noise satisfies Gaussian distribution with zero mean. The proposed method checks the similarity between noise distribution and a zero-mean Gaussian distribution, and follows with the local flatness and texture measurement. Finally, all features are fed to a support vector machine classifier. The algorithm has low computational cost. Experiments show its effectiveness in exposing forgery.